1. A. Ahmadian, S. Salahshour, C. S Chan, D. Baleanu, Numerical Solutions of Fuzzy Differential Equations by an Efficient Runge-Kutta Method with Generalized Differentiability, Fuzzy Sets and Systems, 331, (2018), 47-67. [
DOI:10.1016/j.fss.2016.11.013]
2. O. Akın, T. Khaniyev, ¨ O. Oru¸c, I. T¨urk¸sen, An Algorithm for the Solution of Second Order Fuzzy Initial Value Problems, Expert Systems with Applications, 40(3), (2013), 953-957. [
DOI:10.1016/j.eswa.2012.05.052]
3. R. Alikhani, F. Bahrami, Fuzzy Partial Differential Equations Under the Cross Product of Fuzzy Numbers, Information Sciences, 494, (2019), 80-99. [
DOI:10.1016/j.ins.2019.04.030]
4. R. Alikhani, M. Mostafazadeh, First Order Linear Fuzzy Differential Equations with Fuzzy Variable Coefficients, Computational Methods for Differential Equations, 9(1), (2020), 1-21.
5. L. C. Barros, R. C. Bassanezi, R. Z. De Oliveira, Fuzzy Differential Inclusion: An Application to Epidemiology, Soft Methodology and Random Information Systems, 8(2), (2004), 631-637. [
DOI:10.1007/978-3-540-44465-7_78]
6. B. Bede, Studies in Fuzziness and Soft Computing. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295, Springer, 2013. [
DOI:10.1007/978-3-642-35221-8]
7. B. Bede, S. G. Gal, Generalizations of the Differentiability of Fuzzy-number-valued Functions with Applications to Fuzzy Differential Equations, Fuzzy sets and systems, 151(3), (2005), 581-599. [
DOI:10.1016/j.fss.2004.08.001]
8. B. Bede, I. J. Rudas, A. L. Bencsik, First Order Linear Fuzzy Differential Equations Under Generalized Differentiability, Information Sciences, 177(7), (2007), 1648-1662. [
DOI:10.1016/j.ins.2006.08.021]
9. B. Bede, L. Stefanini, Generalized Differentiability of Fuzzy-valued Functions, Fuzzy sets and systems, 230(1), (2013), 119-141. [
DOI:10.1016/j.fss.2012.10.003]
10. T. L. Bergman, F. P. Incropera, D. P. DeWitt, A. S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011.
11. A. M. Bica, D. Fechete, I. Fechete, Towards the Properties of Fuzzy Multiplication for Fuzzy Numbers, Kybernetika, 55(1), (2019), 44-62. [
DOI:10.14736/kyb-2019-1-0044]
12. J. J. Buckley, T. Feuring, Fuzzy Differential Equations, Fuzzy sets and Systems, 110(1), (2000), 43-54. [
DOI:10.1016/S0165-0114(98)00141-9]
13. F. Calza, M. Gaeta, V. Loia, F. Orciuoli, P. Piciocchi, L. Rarit'a, J, Spohrer, A. Tommasetti, Fuzzy Consensus Model for Governance in Smart Cities, Proceedings of 6th International conference on applied human factors and ergonomics (AHFE 2015) and the affiliated conferences, (2015), 1325-1332.
14. M. Chehlabi, T. Allahviranloo, Positive or Negative Solutions to First-order Fully Fuzzy Linear Differential Equations Under Generalized Differentiability, Applied Soft Computing, 70, (2018), 359-370. [
DOI:10.1016/j.asoc.2018.05.040]
15. G. D'Aniello, M. Gaeta, S. Tomasiello, L. Rarit'a, A Fuzzy Consensus Approach for Group Decision Making with Variable Importance of Experts, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2016), 1693-1700. [
DOI:10.1109/FUZZ-IEEE.2016.7737894]
16. P. Darabi, S. Moloudzadeh, H. Khandani, A Numerical Method for Solving First-order Fully Fuzzy Differential Equation Under Strongly Generalized H-differentiability, Soft Computing, 20(10), (2016), 4085-4098. [
DOI:10.1007/s00500-015-1743-0]
17. L. C. De Barros, F. Santo Pedro, Fuzzy Differential Equations with Interactive Derivative, Fuzzy sets and systems, 309, (2017), 64-80. [
DOI:10.1016/j.fss.2016.04.002]
18. M. de Falco, M. Gaeta, V. Loia, L. Rarit'a, S. Tomasiello, Differential Quadrature-based Numerical Solutions of a Fluid Dynamic Model for Supply Chains, Communications in Mathematical Sciences, 14(5), (2016), 1467-1476. [
DOI:10.4310/CMS.2016.v14.n5.a11]
19. G. Eslami, E. Esmaeilzadeh, A. T. P'erez, Modeling of Conductive Particle Motion in Viscous Medium Affected by an Electric Field Considering Particle-electrode Interactions and Microdischarge Phenomenon, Physics of Fluids, 28(10), (2016), 107102. [
DOI:10.1063/1.4964683]
20. G. Estami, E. Esmaelzadeh, P. Garcia-Sanchez, A. Behzadmehr, S. Baheri, Heat Transfer Enhancement in a Stagnant Dielectric Liquid by the Up and Down Motion of Conductive Particles Induced by Coulomb Forces, J. Appl. Fluid Mech., 10, (2017), 169-182. [
DOI:10.18869/acadpub.jafm.73.238.26556]
21. N. Gasilov, S¸. E. Amrahov, A. G. Fatullayev, Solution of Linear Differential Equations with Fuzzy Boundary Values, Fuzzy Sets and Systems, 257, (2014), 169-183. [
DOI:10.1016/j.fss.2013.08.008]
22. N. Gasilov, S¸. Amrahov, A. G. Fatullayev, I. Hashimoglu, Solution Method for a Boundary Value Problem with Fuzzy Forcing Function, Information Sciences, 317, (2015), 349-368. [
DOI:10.1016/j.ins.2015.05.002]
23. L. T. Gomes, L. C. de Barros, B. Bede, Fuzzy Differential Equations in Various Approaches, Springer, 2015. [
DOI:10.1007/978-3-319-22575-3]
24. A. Khastan, R. Rodr'ıguez-L'opez, On Linear Fuzzy Differential Equations by Differential Inclusions' Approach, Fuzzy Sets and Systems, 387, (2020), 49-67. [
DOI:10.1016/j.fss.2019.05.014]
25. A. Khastan, R. Rodr'ıguez-L'opez, On the Solutions to First Order Linear Fuzzy Differential Equations, Fuzzy Sets and Systems, 295, (2016), 114-135. [
DOI:10.1016/j.fss.2015.06.005]
26. M. Mazandarani, N. Pariz, A. V. Kamyad, Granular Differentiability of Fuzzy-numbervalued Functions, IEEE Transactions on Fuzzy Systems, 26(1), (2017), 310-323. [
DOI:10.1109/TFUZZ.2017.2659731]
27. A. V. Plotnikov, N. V. Skripnik, The Generalized Solutions of the Fuzzy Differential Inclusions, Int. J. Pure Appl. Math, 56(2), (2009), 165-172.
28. M. L. Puri, D. A. Ralescu, Differentials of Fuzzy Functions, Journal of Mathematical Analysis and Applications, 91(2), (1983), 552-558. [
DOI:10.1016/0022-247X(83)90169-5]
29. L. Rarit'a, I. Stamova, S. Tomasiello, Numerical Schemes and Genetic Algorithms for the Optimal Control of a Continuous Model of Supply Chains, Applied Mathematics and Computation, 388, (2021), 125464. [
DOI:10.1016/j.amc.2020.125464]
30. D. E. S'anchez, L. C. de Barros, E. Esmi, On Interactive Fuzzy Boundary Value Problems, Fuzzy sets and systems, 358, (2019), 84-96. [
DOI:10.1016/j.fss.2018.07.009]
31. W. Tian, Y. Heo, P. De Wilde, Z. Li, D. Yan, C. S. Park, X. Feng, G. Augenbroe, A Review of Uncertainty Analysis in Building Energy Assessment, Renewable and Sustainable Energy Reviews, 93, (2018), 285-301. [
DOI:10.1016/j.rser.2018.05.029]
32. M. Zeinali, The Existence Result of a Fuzzy Implicit Integro-differential Equation in Semilinear Banach Space, Computational Methods for Differential Equations, 5(3), (2017), 232-245.
33. M. Zeinali, Gh. Eslami, Uncertainty Analysis of Temperature Distribution in a Thermal Fin Using the Concept of Fuzzy Derivative, Journal of Mechanical Engineering, (2021).
34. M. Zeinali, S. Shahmorad, An Equivalence Lemma for a Class of Fuzzy Implicit Integrodifferential Equations, Journal of Computational and Applied Mathematics, 327, (2018), 388-399. [
DOI:10.1016/j.cam.2017.06.001]
35. M. Zeinali, S. Shahmorad, K. Mirnia, Fuzzy Integro-differential Equations: Discrete Solution and Error Estimation, Iranian Journal of Fuzzy Systems, 10(1), (2013), 107-122.