Volume 20, Issue 2 (9-2025)                   IJMSI 2025, 20(2): 1-16 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeinali M, Maheri F, Tomasiello S. The Modified MCE-product: An Efficient Approach to Treat Fuzzy Coefficients in Differential Equations. IJMSI 2025; 20 (2) :1-16
URL: http://ijmsi.ir/article-1-2072-en.html
Abstract:  
In this paper, first, we modify the recently introduced MCEproduct to include the property of shape-preserving. This product has attractive properties. For example, it is distributive with respect to the addition and it doesn’t depend on the signs of multiplied fuzzy numbers. Then, the effectiveness and applicability of the modified MCE-product are investigated in treating differential equations with fuzzy multiplications. Due to the complexity of fuzzy multiplication, differential equations with fuzzy coefficients are one of the most challenging topics in the field of fuzzy differential equations. In this paper, as an example of these equations, the first-order linear differential equation with fuzzy variable coefficients is solved by using the modified MCE-product. This equation was chosen because it has been recently solved by Zadeh extension principle-based product and cross-product and we can compare our results with them. The results show the priority of the MCE-product over the mentioned methods.
Type of Study: Research paper | Subject: General

References
1. A. Ahmadian, S. Salahshour, C. S Chan, D. Baleanu, Numerical Solutions of Fuzzy Differential Equations by an Efficient Runge-Kutta Method with Generalized Differentiability, Fuzzy Sets and Systems, 331, (2018), 47-67. [DOI:10.1016/j.fss.2016.11.013]
2. O. Akın, T. Khaniyev, ¨ O. Oru¸c, I. T¨urk¸sen, An Algorithm for the Solution of Second Order Fuzzy Initial Value Problems, Expert Systems with Applications, 40(3), (2013), 953-957. [DOI:10.1016/j.eswa.2012.05.052]
3. R. Alikhani, F. Bahrami, Fuzzy Partial Differential Equations Under the Cross Product of Fuzzy Numbers, Information Sciences, 494, (2019), 80-99. [DOI:10.1016/j.ins.2019.04.030]
4. R. Alikhani, M. Mostafazadeh, First Order Linear Fuzzy Differential Equations with Fuzzy Variable Coefficients, Computational Methods for Differential Equations, 9(1), (2020), 1-21.
5. L. C. Barros, R. C. Bassanezi, R. Z. De Oliveira, Fuzzy Differential Inclusion: An Application to Epidemiology, Soft Methodology and Random Information Systems, 8(2), (2004), 631-637. [DOI:10.1007/978-3-540-44465-7_78]
6. B. Bede, Studies in Fuzziness and Soft Computing. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295, Springer, 2013. [DOI:10.1007/978-3-642-35221-8]
7. B. Bede, S. G. Gal, Generalizations of the Differentiability of Fuzzy-number-valued Functions with Applications to Fuzzy Differential Equations, Fuzzy sets and systems, 151(3), (2005), 581-599. [DOI:10.1016/j.fss.2004.08.001]
8. B. Bede, I. J. Rudas, A. L. Bencsik, First Order Linear Fuzzy Differential Equations Under Generalized Differentiability, Information Sciences, 177(7), (2007), 1648-1662. [DOI:10.1016/j.ins.2006.08.021]
9. B. Bede, L. Stefanini, Generalized Differentiability of Fuzzy-valued Functions, Fuzzy sets and systems, 230(1), (2013), 119-141. [DOI:10.1016/j.fss.2012.10.003]
10. T. L. Bergman, F. P. Incropera, D. P. DeWitt, A. S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011.
11. A. M. Bica, D. Fechete, I. Fechete, Towards the Properties of Fuzzy Multiplication for Fuzzy Numbers, Kybernetika, 55(1), (2019), 44-62. [DOI:10.14736/kyb-2019-1-0044]
12. J. J. Buckley, T. Feuring, Fuzzy Differential Equations, Fuzzy sets and Systems, 110(1), (2000), 43-54. [DOI:10.1016/S0165-0114(98)00141-9]
13. F. Calza, M. Gaeta, V. Loia, F. Orciuoli, P. Piciocchi, L. Rarit'a, J, Spohrer, A. Tommasetti, Fuzzy Consensus Model for Governance in Smart Cities, Proceedings of 6th International conference on applied human factors and ergonomics (AHFE 2015) and the affiliated conferences, (2015), 1325-1332.
14. M. Chehlabi, T. Allahviranloo, Positive or Negative Solutions to First-order Fully Fuzzy Linear Differential Equations Under Generalized Differentiability, Applied Soft Computing, 70, (2018), 359-370. [DOI:10.1016/j.asoc.2018.05.040]
15. G. D'Aniello, M. Gaeta, S. Tomasiello, L. Rarit'a, A Fuzzy Consensus Approach for Group Decision Making with Variable Importance of Experts, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2016), 1693-1700. [DOI:10.1109/FUZZ-IEEE.2016.7737894]
16. P. Darabi, S. Moloudzadeh, H. Khandani, A Numerical Method for Solving First-order Fully Fuzzy Differential Equation Under Strongly Generalized H-differentiability, Soft Computing, 20(10), (2016), 4085-4098. [DOI:10.1007/s00500-015-1743-0]
17. L. C. De Barros, F. Santo Pedro, Fuzzy Differential Equations with Interactive Derivative, Fuzzy sets and systems, 309, (2017), 64-80. [DOI:10.1016/j.fss.2016.04.002]
18. M. de Falco, M. Gaeta, V. Loia, L. Rarit'a, S. Tomasiello, Differential Quadrature-based Numerical Solutions of a Fluid Dynamic Model for Supply Chains, Communications in Mathematical Sciences, 14(5), (2016), 1467-1476. [DOI:10.4310/CMS.2016.v14.n5.a11]
19. G. Eslami, E. Esmaeilzadeh, A. T. P'erez, Modeling of Conductive Particle Motion in Viscous Medium Affected by an Electric Field Considering Particle-electrode Interactions and Microdischarge Phenomenon, Physics of Fluids, 28(10), (2016), 107102. [DOI:10.1063/1.4964683]
20. G. Estami, E. Esmaelzadeh, P. Garcia-Sanchez, A. Behzadmehr, S. Baheri, Heat Transfer Enhancement in a Stagnant Dielectric Liquid by the Up and Down Motion of Conductive Particles Induced by Coulomb Forces, J. Appl. Fluid Mech., 10, (2017), 169-182. [DOI:10.18869/acadpub.jafm.73.238.26556]
21. N. Gasilov, S¸. E. Amrahov, A. G. Fatullayev, Solution of Linear Differential Equations with Fuzzy Boundary Values, Fuzzy Sets and Systems, 257, (2014), 169-183. [DOI:10.1016/j.fss.2013.08.008]
22. N. Gasilov, S¸. Amrahov, A. G. Fatullayev, I. Hashimoglu, Solution Method for a Boundary Value Problem with Fuzzy Forcing Function, Information Sciences, 317, (2015), 349-368. [DOI:10.1016/j.ins.2015.05.002]
23. L. T. Gomes, L. C. de Barros, B. Bede, Fuzzy Differential Equations in Various Approaches, Springer, 2015. [DOI:10.1007/978-3-319-22575-3]
24. A. Khastan, R. Rodr'ıguez-L'opez, On Linear Fuzzy Differential Equations by Differential Inclusions' Approach, Fuzzy Sets and Systems, 387, (2020), 49-67. [DOI:10.1016/j.fss.2019.05.014]
25. A. Khastan, R. Rodr'ıguez-L'opez, On the Solutions to First Order Linear Fuzzy Differential Equations, Fuzzy Sets and Systems, 295, (2016), 114-135. [DOI:10.1016/j.fss.2015.06.005]
26. M. Mazandarani, N. Pariz, A. V. Kamyad, Granular Differentiability of Fuzzy-numbervalued Functions, IEEE Transactions on Fuzzy Systems, 26(1), (2017), 310-323. [DOI:10.1109/TFUZZ.2017.2659731]
27. A. V. Plotnikov, N. V. Skripnik, The Generalized Solutions of the Fuzzy Differential Inclusions, Int. J. Pure Appl. Math, 56(2), (2009), 165-172.
28. M. L. Puri, D. A. Ralescu, Differentials of Fuzzy Functions, Journal of Mathematical Analysis and Applications, 91(2), (1983), 552-558. [DOI:10.1016/0022-247X(83)90169-5]
29. L. Rarit'a, I. Stamova, S. Tomasiello, Numerical Schemes and Genetic Algorithms for the Optimal Control of a Continuous Model of Supply Chains, Applied Mathematics and Computation, 388, (2021), 125464. [DOI:10.1016/j.amc.2020.125464]
30. D. E. S'anchez, L. C. de Barros, E. Esmi, On Interactive Fuzzy Boundary Value Problems, Fuzzy sets and systems, 358, (2019), 84-96. [DOI:10.1016/j.fss.2018.07.009]
31. W. Tian, Y. Heo, P. De Wilde, Z. Li, D. Yan, C. S. Park, X. Feng, G. Augenbroe, A Review of Uncertainty Analysis in Building Energy Assessment, Renewable and Sustainable Energy Reviews, 93, (2018), 285-301. [DOI:10.1016/j.rser.2018.05.029]
32. M. Zeinali, The Existence Result of a Fuzzy Implicit Integro-differential Equation in Semilinear Banach Space, Computational Methods for Differential Equations, 5(3), (2017), 232-245.
33. M. Zeinali, Gh. Eslami, Uncertainty Analysis of Temperature Distribution in a Thermal Fin Using the Concept of Fuzzy Derivative, Journal of Mechanical Engineering, (2021).
34. M. Zeinali, S. Shahmorad, An Equivalence Lemma for a Class of Fuzzy Implicit Integrodifferential Equations, Journal of Computational and Applied Mathematics, 327, (2018), 388-399. [DOI:10.1016/j.cam.2017.06.001]
35. M. Zeinali, S. Shahmorad, K. Mirnia, Fuzzy Integro-differential Equations: Discrete Solution and Error Estimation, Iranian Journal of Fuzzy Systems, 10(1), (2013), 107-122.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb