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Abstract. In this paper, first, we modify the recently introduced MCE-

product to include the property of shape-preserving. This product has

attractive properties. For example, it is distributive with respect to the

addition and it doesn’t depend on the signs of multiplied fuzzy numbers.

Then, the effectiveness and applicability of the modified MCE-product are

investigated in treating differential equations with fuzzy multiplications.

Due to the complexity of fuzzy multiplication, differential equations with

fuzzy coefficients are one of the most challenging topics in the field of fuzzy

differential equations. In this paper, as an example of these equations,

the first-order linear differential equation with fuzzy variable coefficients

is solved by using the modified MCE-product. This equation was chosen

because it has been recently solved by Zadeh extension principle-based

product and cross-product and we can compare our results with them.

The results show the priority of the MCE-product over the mentioned

methods.
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1. Introduction

Nowadays, fuzzy mathematics and fuzzy logic have many applications in

various fields of science and technology [13, 15, 18, 29]. Fuzzy differential equa-

tions (FDE) are used to model uncertain engineering problems [31, 33]. There

are various approaches to interpret an FDE [23]. These approaches are di-

vided into several main categories: The Zadeh extension principle approach

[12], fuzzy differential inclusion [5, 27], the fuzzy bunches of function approach

[21, 22], and the approaches based on fuzzy derivatives including the Hukuhara

derivative [28] and its generalizations [7, 9], granular derivative [26], and in-

teractive derivative [17, 30]. In recent decades, FDEs have developed from

different areas such as numerical solution methods [1, 16, 35], existence and

uniqueness results [3, 32, 34], analytical solutions [21, 22], etc. However, in the

literature associated with FDE, equations involving fuzzy multiplication have

been less studied. This is due to the complexities and difficulties of the fuzzy

multiplication operator.

Among the proposed methods for fuzzy multiplication, the Zadeh extension

based product is one of the oldest which despite its comprehensiveness, has

some disadvantages limiting its use. For instance, it is not distributive with

respect to the addition and doesn’t preserve the shape of multiplied fuzzy num-

bers, it depends on the signs of multiplied fuzzy numbers and it is computation-

ally expensive and practically difficult to use. For all these reasons, researchers

in this field made a lot of effort to find alternatives to this multiplication. Re-

cently, a new fuzzy product has been introduced which uses middle-core-ecart

representation (MCE-representation, for short) and it is called MCE-product.

MCE-product is distributive, easy to use and it doesn’t depend on the signs

of the multiplied fuzzy numbers. But it is not shape-preserving. In this work,

a slight modification is done in MCE-product to take advantage of the shape-

preserving property. Hereafter we use the term MMCE-product as the modified

MCE-product.

The interesting features of the MMCE-product make it efficient to solve

differential equations involving fuzzy products. This class of FDEs has been

rarely investigated. We can mention [2, 3, 4, 14] as a few relevant work.

In this paper, the first order FDE{
u′(x) + p(x)⊛ u(x) = q(x),

u(x0) = u0

(1.1)

is solved analytically in fully fuzzy form (i.e. p, q : R → RF and u0 ∈ RF ).

The symbol “⊛” stands for the MMCE-product. Although various works have

been done in the first order fuzzy differential equations [8, 25], most of them

are about nonlinear differential equations. It is well-known that the non-fuzzy

form of the equation (1.1) has an analytical solution. However, obtaining this
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analytical solution in fuzzy form is complicated. In [8, 25], the equation 1.1

has been studied for crisp p(x). Also, this equation in fully fuzzy form has

been solved with some conditions on the signs of p(x) and q(x) in [4] and [14]

using the cross product and the Zadeh extension based product, respectively.

In the present work, we propose a solution method independent of the signs of

p(x) and q(x). This is done based on the MMCE-product. Furthermore, we

show that, in contrast to the mentioned works, the equation would have (i)-

and (ii)-solutions under the same conditions.

The crisp form of the under-study differential equation has important appli-

cations in various engineering fields, such as

• Cooling of a solid body by convective heat transfer ([10]).

• Distribution of the average temperature of a fluid flowing in a tube

([10]).

• Dynamics of a particle moving in a viscous medium ([19, 20]).

It is worthy to note that in all these applications, there are inherently uncertain

parameters such as geometric dimensions, thermo-physical properties of mate-

rials, and initial conditions. Basically, these uncertainties might be modeled

by fuzzy numbers and functions resulting in the fuzzy form of the differential

equation under study.

This paper is organized as follows: Section 2 presents some basic concepts re-

lated to the MCE-representation and MCE-product. At the end of this section,

the MMCE-product is introduced. Section 3 is devoted to the derivative and

integral of fuzzy number-valued functions based on the MCE-representation.

The main results are given in Section 4. In the last section, several examples

are presented and compared with the previous studies to show the efficiency

and advantages of the proposed method.

2. Preliminaries

Throughout this paper, the space of fuzzy numbers and the space of trian-

gular fuzzy numbers are denoted by RF and Rτ , respectively. The notation

ur = [u−
r , u

+
r ] stands for the r-cut of the fuzzy number u.

Definition 2.1. (MCE-representation [11]) For u ∈ RF , consider the functions

θ−u , θ
+
u : [0, 1] → R+ defined by{

θ−u (r) = mu − u−
r

θ+u (r) = u+
r −mu.

Wheremu =
u−
1 +u+

1

2 . Then, u = (mu; θ
−
u , θ

+
u ) is MCE-representation of u. Note

that the semicolon symbol makes this different from the well-known notation of

a typical triangular fuzzy number denoted by (a, b, c). Hereafter, fuzzy numbers

are assumed to be in the form of MCE-representation.
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(mu; θ
−
u , θ

+
u ) represents a fuzzy number if and only if θ−u , θ

+
u are bounded,

positive, non-increasing, left-continuous on (0, 1] and right-continuous at 0.

Definition 2.2. Let u = (mu; θ
−
u , θ

+
u ) and v = (mv; θ

−
v , θ

+
v ). MCE-product of

u and v is defined as

u⊙ v = (mumv; θ
−
u θ

−
v , θ

+
u θ

+
v ).

The r-cuts of u⊙ v is (u⊙ v)r = [w−
r , w

+
r ], where

w−
r = mumv − θ−u θ

−
v

w+
r = mumv + θ+u θ

+
v

for u, v ∈ RF and α ∈ R, the sum and scalar multiplication are defined as

u+ v = (mu +mv; θ
−
u + θ−v , θ

+
u + θ+v ),

αu =

{
(αmu;αθ

−
u , αθ

+
u ), α ≥ 0,

(αmu;−αθ+u ,−αθ−u ), α < 0.

Theorem 2.3. Let u = (mu; θ
−
u , θ

+
u ), v = (mv; θ

−
v , θ

+
v ) and w = (mw; θ

−
w , θ

+
w)

are three fuzzy numbers. Also assume 0 = (0; 0, 0) and 1 = (1; 1, 1). Then we

have the following properties:

(i) Commutativity: u⊙ v = v ⊙ u

(ii) Associativity: (u⊙ v)⊙ w = u⊙ (v ⊙ w)

(iii) Distributivity: (u+ v)⊙ w = (u⊙ w) + (v ⊙ w)

(iv) Neutral member: u⊙ 1 = u

(v) u⊙ u = 0 iff u = 0.

For more details about the MCE-product, see [11].

In addition to the properties provided in this theorem, the MCE-product is

easy to use and independent of the signs of multiplied fuzzy numbers. These

properties make it useful to solve a class of differential equations that includes

fuzzy multiplication. Despite the interesting properties of the MCE-product,

it does not preserve the shape of the multiplied fuzzy numbers. To remove this

shortcoming, we define the modified form of the MCE-product as follows.

Let u = (a, b, c) be a typical triangular fuzzy number. The MCE-representation

of u is

u =
(
b;
(
b− a

)
(1− r),

(
c− b

)
(1− r)

)
.

which is in the form of
(
mu; k

−
u (1 − r), k+u (1 − r)

)
, where k−u , k

+
u ∈ R+, k−u =

b− a, k+u = c− b and mu = b.

Definition 2.4. (MMCE-product) Let u, v ∈ Rτ . The MMCE-product is

defined as follows

u⊛ v =
(
mumv; k

−
u k

−
v (1− r), k+u k

+
v (1− r)

)
.

Clearly u⊛ v ∈ Rτ .
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In Fig. 1, the MCE- and MMCE-products are shown for u =
(
0; 1− r, 2(1−

r)
)
and v =

(
4; 1− r, 2(1− r)

)
.

Figure 1. MCE-product (dash line) and MMCE-product (solid

line) of u =
(
0; 1− r, 2(1− r)

)
and v =

(
4; 1− r, 2(1− r)

)
.

The r-cuts of u⊛ v is (u⊛ v)r = [w−
r , w

+
r ], where

w−
r = mumv − k−u k

−
v (1− r)

w+
r = mumv + k+u k

+
v (1− r).

The standard representation of u⊛ v as a triangular fuzzy number is

u⊛ v = (mumv − k−u k
−
v ,mumv,mumv + k+u k

+
v ).

Under MMCE-product, the inverse of u =
(
mu; k

−
u (1− r), k+u (1− r)

)
is u−1 =(

1
mu

; 1
k−
u
(1− r), 1

k+
u
(1− r)

)
.

Theorem 2.5. Let u = (mu; k
−
u (1−r), k+u (1−r)), v = (mv; k

−
v (1−r), k+v (1−r))

and w = (mw; k
−
w (1 − r), k+w (1 − r)) are three fuzzy numbers, 0 = (0; 0, 0) and

1̄ = (1; 1− r, 1− r). Then we have the following properties:

(i) Commutativity: u⊛ v = v ⊛ u

(ii) Associativity: (u⊛ v)⊛ w = u⊛ (v ⊛ w)

(iii) Distributivity: (u+ v)⊛ w = (u⊛ w) + (v ⊛ w)

(iv) Neutral member: u⊛ 1 = u

(v) u⊛ u = 0 iff u = 0.

Proof. The proof is trivial and very similar to the Theorem 3.2 of [11] and thus

we omit it here. □

3. Calculus of fuzzy number-valued functions using

MCE-representation

In this section, we obtain the GH-derivative and integral of a fuzzy number-

valued function based on the MCE-representation. Let us denote the MCE-

representation of an arbitrary fuzzy function f : R → RF with

f(x) = (mf (x); θ
−
f (x, r), θ

+
f (x, r)). In the following theorem, we obtain MCE-

representation of (i)- and (ii)-GH-derivative of a fuzzy function.
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Theorem 3.1. Let f : R → RF .

(i) If f is (i)-GH-differentiable, then f ′(x) =
(
m′

f (x); (θ
−
f )

′(x, r), (θ+f )
′(x, r)

)
.

(ii) If f is (ii)-GH-differentiable, then

f ′(x) =
(
m′

f (x);−(θ+f )
′(x, r),−(θ−f )

′(x, r)
)
.

Here, the symbol “ ′ ” denotes derivative with respect to x.

Proof. If f is (i)-GH-differentiable, then
[
f ′(x)

]
r
=

[
(f−

r )′(x), (f+
r )′(x)

]
. Thus,

we can write

f ′(x) =
( (f−

1 )′(x) + (f+
1 )′(x)

2
;
(f−

1 )′(x) + (f+
1 )′(x)

2

− (f−
r )′(x), (f+

r )′(x)− (f−
1 )′(x) + (f+

1 )′(x)

2

)
=

(
m′

f (x); (θ
−
f )′(x, r), (θ+f )

′(x, r)
)
.

If f is (ii)-GH-differentiable, then
[
f ′(x)

]
r
=

[
(f+

r )′(x), (f−
r )′(x)

]
. Thus, the

MCE-representation of f ′(x) is

f ′
r =

( (f−
1 )′ + (f+

1 )′

2
;
(f−

1 )′ + (f+
1 )′

2
− (f+

r )′, (f−
r )′ − (f−

1 )′ + (f+
1 )′

2

)
=

( (f−
1 )′ + (f+

1 )′

2
;−((f+

r )′ − (f−
1 )′ + (f+

1 )′

2
),−(

(f−
1 )′ + (f+

1 )′

2
− (f−

r )′)
)

=
(
m′

f (x);−(θ+f )
′(x, r),−(θ−f )

′(x, r)
)
.

□

The following results can be deduced from Theorem 3.1, immediately.

Corollary 3.2. If f is (i)- or (ii)-GH-differentiable at x, then we have

(a) f ′(x) =
(
m′

f (x);max{−θ+′
f (x, r), θ−′

f (x, r)},max{θ+′
f (x, r),−θ−′

f (x, r)}
)
,

(b) θ+′
f (x, r)θ−′

f (x, r) ≥ 0.

Theorem 3.3. Let f : (a, b) → Rτ , f(x) =
(
mf (x), k

−
f (x)(1−r), k+f (x)(1−r)

)
and mf , k

−
f , k

+
f ∈ C(a, b).

• If
(
k−f (x)

)′
> 0 and

(
k+f (x)

)′
> 0, then f is (i)-GH-differentiable and

f ′(x) =
(
(mf (x))

′, (k−f (x))
′(1− r), (k+f )

′(x)(1− r)
)
.

• If
(
k−f (x)

)′
< 0 and

(
k+f (x)

)′
< 0, then f is (ii)-GH-differentiable and

f ′(x) =
(
(mf (x))

′,−(k+f (x))
′(1− r),−(k−f )

′(x)(1− r)
)
.

Proof. Let x ∈ (a, b) be given. If
(
k−f (x)

)′
> 0 and

(
k+f (x)

)′
> 0. By using the

Mean Value Theorem, for sufficiently small h > 0, there exist ξ1, ξ2 ∈ (x, x+h)

such that
(
k−f (ξ1)

)′
,
(
k+f (ξ2)

)′
> 0 and

k−f (x+ h) = k−f (x) + h
(
k−f (ξ1)

)′
(3.1)

k+f (x+ h) = k+f (x) + h
(
k+f (ξ2)

)′
. (3.2)
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On the other hand,

mf (x+ h) = mf (x) + h
(
mf (ξ3)

)′
, ξ3 ∈ (a, b). (3.3)

From (3.1)-(3.3), one can conclude(
mf (x+ h); k−f (x+ h)(1− r),k+f (x+ h)(1− r)

)
=

(
mf (x); k

−
f (x)(1− r), k+f (x)(1− r)

)
+ h

((
mf (ξ3)

)′
;
(
k−f (ξ1)

)′
(1− r),

(
k+f (ξ2)

)′
(1− r)

)
which means

f(x+ h)⊖H f(x) = h
((

mf (ξ3)
)′
;
(
k−f (ξ1)

)′
(1− r),

(
k+f (ξ2)

)′
(1− r)

)
.

Thus,

lim
h↘0

f(x+ h)⊖H f(x)

h
= lim

h↘0

((
mf (ξ3)

)′
;
(
k−f (ξ1)

)′
(1− r),

(
k+f (ξ2)

)′
(1− r)

)
=

((
mf (x)

)′
;
(
k−f (x)

)′
(1− r),

(
k+f (x)

)′
(1− r)

)
.

The proof of the second part is very similar to the first one. Thus we skip

it. □

In the following, the integral of a fuzzy function is given by using the MCE

representation. Throughout this paper, we will use the fuzzy Riemann integral

for the concept of integral [6].

Let f : [a, b] → RF be a fuzzy Riemann integrable, then[ ∫ b

a

f(x)dx
]
r
=

[ ∫ b

a

f−
r (x)dx,

∫ b

a

f+
r (x)dx

]
using MCE-representation, it is∫ b

a

f(x)dx =

(∫ b

a

mf (x)dx;

∫ b

a

θ−f (x, r)dx,

∫ b

a

θ+f (x, r)dx
)
.

4. The linear first order fuzzy differential equation

Here, we study the following fuzzy initial value problem{
u′(x) + p(x)⊛ u(x) = q(x),

u(x0) = u0

(4.1)

where p, q : R → Rτ and u0 ∈ Rτ .

Let

u(x) =
(
mu(x); k

−
u (x)(1− r), k+u (x)(1− r)

)
,

p(x) =
(
mp(x); k

−
p (x)(1− r), k+p (x)(1− r)

)
,

q(x) =
(
mq(x); k

−
q (x)(1− r), k+q (x)(1− r)

)
.
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Definition 4.1. We say that u : R → Rτ is a solution for the problem (4.1) if

it is GH-differentiable and satisfies the problem (4.1) for all x ∈ R. According

to the type of GH-differentiability, two types of solution can be considered:

• A fuzzy solution u is called (i)-solution, if u is (i)-GH-differentiable.

• A fuzzy solution u is called (ii)-solution, if u is (ii)-GH-differentiable.

Theorem 4.2. ((i)-solution) Let

F (x) =
(
e
∫
mp(x)dx; e

∫
k−
p (x)dx(1− r), e

∫
k+
p (x)dx(1− r)

)
,

F (x0) =
(
mF0, k

−
F0(1− r), k+F0(1− r)

)
,

u0 =
(
mu0, k

−
u0(1− r), k+u0(1− r)

)
.

If

k−q (x)− k−F0k
−
u0k

−
p (x)e

−
∫
k−
p (x)dx − k−p (x)e

−
∫
k−
p (x)dx

∫ x

x0

k−q (t)e
∫
k−
p (t)dtdt > 0

(4.2)

k+q (x)− k+F0k
+
u0k

+
p (x)e

−
∫
k+
p (x)dx − k+p (x)e

−
∫
k+
p (x)dx

∫ x

x0

k+q (t)e
∫
k+
p (t)dtdt > 0,

(4.3)

then

u(x) = F (x)−1 ⊛ F (x0)⊛ u0 + F (x)−1 ⊛
∫ x

x0

F (t)⊛ q(t)dt (4.4)

is (i)-solution of (4.1).

Proof. Suppose that

u(x) = F (x)−1 ⊛ F (x0)⊛ u0 + F (x)−1 ⊛
∫ x

x0

F (t)⊛ q(t)dt.

By substituting F (x), F (x0), u(x0) and q(t) in u, we have

u(x) =
(
mu(x); k

−
u (x)(1− r), k+u (x)(1− r)

)
(4.5)

where

mu(x) =e−
∫
mp(x)dx

[
mF0mu0 +

∫ x

x0

e
∫
mp(t)dtmq(t)dt

]
k−u (x) =e−

∫
k−
p (x)dx

[
k−F0k

−
u0 +

∫ x

x0

e
∫
k−
p (t)dtk−q (t)dt

]
k+u (x) =e−

∫
k+
p (x)dx

[
k+F0k

+
u0 +

∫ x

x0

e
∫
k+
p (t)dtk+q (t)dt

]
.
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Since

d

dx
k−u (x) =k−q (x)− k−F0k

−
u0k

−
p (x)e

−
∫
k−
p (x)dx

− k−p (x)e
−

∫
k−
p (x)dx

∫ x

x0

k−q (t)e
∫
k−
p (t)dtdt (4.6)

d

dx
k−u (x) =k+q (x)− k+F0k

+
u0k

+
p (x)e

−
∫
k+
p (x)dx

− k+p (x)e
−

∫
k+
p (x)dx

∫ x

x0

k+q (t)e
∫
k+
p (t)dtdt. (4.7)

From these equalities, (4.2), (4.3) and Theorem 3.3, u is (i)-Gh-differentiable.

Now, we show that u satisfies the problem 4.1. Clearly u(x0) = u0 and

moreover, since u is (i)-Gh-differentiable,

u′(x) =
( d

dx
mu(x);

d

dx
k−u (x)(1− r),

d

dx
k+u (x)(1− r)

)
(4.8)

where

d

dx
mu(x) = mq(x)−mF0mu0mp(x)e

∫
−mp(x)dx

−mp(x)e
∫
−mp(x)dx

∫ x

x0

e
∫
mp(t)dtmq(t)dt. (4.9)

By replacing u′(x) and u(x) in u′(x) + p(x)u(x) with the right have sides of

(4.8) and (4.5), respectively, we have

u′(x) + p(x)u(x) =
( d

dx
mu(x) +mp(x)mu(x);

( d

dx
k−u (x) + k−p k

−
u

)
(1− r),( d

dx
k+u (x) + k+p k

+
u

)
(1− r)

)
(4.10)

where

d

dx
mu(x) +mp(x)mu(x) =mq(x)−mF0mu0mp(x)e

∫
−mp(x)dx

−mp(x)e
∫
−mp(x)dx

∫ x

x0

e
∫
mp(t)dtmq(t)dt

+mp(x)e
−

∫
mp(x)dx

[
mF0mu0 +

∫ x

x0

e
∫
mp(t)dtmq(t)dt

]
=mq(x) (4.11)
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d

dx
k−u (x) + k−p (x)k−u (x) =k−q (x)− k−F0k

−
u0k

−
p (x)e−

∫
k−
p (x)dx

− k−p (x)e−
∫
k−
p (x)dx

∫ x

x0

k−q (t)e
∫
k−
p (t)dtdt

+ k−p (x)e−
∫
k−
p (x)dx[k−F0k

−
u0 +

∫ x

x0

e
∫
k−
p (t)dtk−q (t)dt

]
=k−q (x) (4.12)

d

dx
k+u (x) + k+p (x)k+u (x) =k+q (x)− k+F0k

+
u0k

+
p (x)e−

∫
k+
p (x)dx

− k+p (x)e−
∫
k+
p (x)dx

∫ x

x0

k+q (t)e
∫
k+
p (t)dtdt

+ k+p (x)e−
∫
k+
p (x)dx[k+F0k

+
u0 +

∫ x

x0

e
∫
k+
p (t)dtk+q (t)dt

]
=k+q (x). (4.13)

From (4.10), (4.11), (4.12) and (4.12),

u′(x) + p(x)u(x) =
(
mq(x); k

−
q (x)(1− r), k+q (x)(1− r)

)
= q(x).

Consequently, u satisfy problem (4.1). □

(ii)-solution: We assume u is (ii)-GH-differentiable. In this case, there is
not any integrating factor but the equation is still solvable. Since u is (ii)-GH-
differentiable, u′(x) =

(
m′

u(x);−(k+u )
′(x)(1 − r),−(k−u )

′(x)(1 − r)
)
. From the

definition of the MMCE-product, we obtain

(
m

′
u;−(k

+
u )

′
(1 − r),−(k

−
u )

′
(1 − r)

)
+

(
mp; k

−
p (1 − r), k

+
p (1 − r)

)
⊙

(
mu; k

−
u (1 − r), k

+
u (1 − r)

)
=
(
mq ; k

−
q (1 − r), k

+
q (1 − r)

)
(
m

′
u + mpmu;−(k

+
u )

′
+ k

−
p k

−
u (1 − r),−(k

−
u )

′
+ k

+
p k

+
u (1 − r)

)
=

(
mq ; k

−
q (1 − r), k

+
q (1 − r)

)
.

Thus, we have the following three crisp initial value problems


m′

u +mpmu = mq, mu(0) = m0

−(k+u )
′ + k−p k

−
u = k−q , k−u (0) = k−0

−(k−u )
′ + k+p k

+
u = k+q , k+u (0) = k+0 .

After solving this system of differential equations, if k−u , k
+
u ≥ 0 and(

k−u
)′
,
(
k+u

)′
< 0, the equation has a (ii)-solution, otherwse it doesn’t have a

(ii)-solution.
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Remark 4.3. It is worth noting that in the field of fuzzy mathematics the

following initial value problems are different [8]:{
u′(x) + p(x)⊛ u(x) = q(x),

u(x0) = u0{
u′(x) = (−p(x)⊛ u(x)) + q(x),

u(x0) = u0{
u′(x) + (−q(x)) = (−p(x)⊛ u(x)),

u(x0) = u0.

In the current work, we explain how to calculate the solution to the first prob-

lem. The other two cases are similarly solvable (see Examples 5.2 and 5.3).

5. Examples

In this section, we provide three examples. The first example is solved using

the procedure presented in Section 4. For comparing the results of the present

method with the previous studies, two other examples are given from [4] and

[14].

Example 5.1. Consider the following fuzzy differential equation with initial

condition{
u′ +

(
1; 1

x+1 (1− r), 1
x+1 (1− r)

)
⊛ u =

(
0;x(1− r), x(1− r)

)
, for x ∈ [1, 1.8),

u(1) =
(
e−1; 11

12 (1− r), 11
12 (1− r)

)
.

(5.1)

(i)-solution. By the method described in Theorem 4.2, the (i)-solution is

u(x) =
(
e−x;

x3

3 + x2

2 + 1

x+ 1
(1− r),

x3

3 + x2

2 + 1

x+ 1
(1− r)

)
.

(ii)-solution. Corresponding system is:
m′

u +mu = 0, mu(1) = −1

−(k−u )
′ + 1

1+xk
+
u = x, k−u (1) =

11
12

−(k+u )
′ + 1

1+xk
−
u = x, k+u (1) =

11
12 .

By solving the above system, the (ii)-solution of (5.1) is obtained as follows

u(x) =
(
e−x; (1+x)

(35
24

−x+ ln(
1 + x

2
)
)
(1− r), (1+x)

(35
24

−x+ ln(
1 + x

2
)
)(
1− r)

)
.

Both of the solutions are illustrated in Figure 2.

Example 5.2. ([4, 14]) Consider the following initial value problem{
u′(x) = (2x;x(1− r), x(1− r))⊛ u(x) + (x; x

2 (1− r), x
2 (1− r)),

u(0) = (−1; 1
2 ,

1
2 ).

(5.2)
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Figure 2. The (i)- and (ii)-solutions of Example 5.1.

This is Example 5.1 of [4] and Example 5.2 of [14].

(i)-solution. Corresponding system is:
m′

u = 2xmu + x, mu(0) = −1

(k−u )
′ = xk−u + x

2 , k−u (0) =
1
2

(k+u )
′ = xk+u + x

2 , k+u (0) =
1
2 .

By solving the above systems, the (i)-solution of (5.3) is

u(x) =
(−1

2

(
1 + ex

2)
;
(
e

x2

2 − 1

2

)
(1− r),

(
e

x2

2 − 1

2

)
(1− r)

)
with the r-cuts

ur(x) =

[
−1

2

(
1 + ex

2)
−
(
e

x2

2 − 1

2
)
(
1− r),

−1

2

(
1 + ex

2)
+

(
e

x2

2 − 1

2
)
(
1− r)

]
.

(ii)-solution. Corresponding system is:

m′
u = mu + x , mu(0) = −1

(k−u )
′ = −xk+u − x

2
, k−u (0) =

1

2

(k+u )
′ = −xk−u − x

2
, k+u (0) =

1

2
.

By solving the above system, the (ii)-solution reads

y(x) =
(
−

1

2

(
1 + e

x2 )
;
(
− sinh(

x2

2
) + cosh(

x2

2
) −

1

2

)
(1 − r),

(
− sinh(

x2

2
) + cosh(

x2

2
) −

1

2

)
(1 − r)

)
.

In Figure 3, both of the (i)- and (ii)-solutions of this example are illustrated.

The (i)-solution is compared with the corresponding solutions presented in [4]
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Figure 3. The (i)- and (ii)-solutions of Example 5.2.

and [14]. As can be seen, the growth of uncertainty in the present method is

significantly less than the two other methods. Also, in contrast to the methods

presented in [4] and [14], our method provides a (ii)-solution, as well.

Example 5.3. ([4, 14]) Consider the following initial value problem{
u′(x) = (−2x;x(1− r), x(1− r))⊛ u(x) + (x; x

2 (1− r), x
2 (1− r)),

u(0) = (−1; 1
2 ,

1
2 ).

(5.3)

This is Example 5.2 of [4] and Example 5.3 of [14].

(i)-solution. Corresponding system is:
m′

u = −2xmu + x, mu(0) = −1

(k−u )
′ = xk−u + x

2 , k−u (0) =
1
2

(k+u )
′ = xk+u + x

2 , k+u (0) =
1
2 .

By solving the above system, (i)-solution of (5.3) is

y(x) =
(1
2
− 3

2
ex

2

;
(
e

x2

2 − 1

2

)
(1− r),

(
e

x2

2 − 1

2

)
(1− r)

)
.

(ii)-solution. Corresponding system is:

m′
u = −2xmu + x, mu(0) = −1

(k−u )
′ = −xk+u − x

2
, k−u (0) =

1

2

(k+u )
′ = −xk−u − x

2
, k+u (0) =

1

2
.

By solving the above system, (ii)-solution is

y(x) =
( 1

2
−

3

2
e
x2

;
(
− sinh(

x2

2
) + cosh(

x2

2
) −

1

2

)
(1 − r),

(
− sinh(

x2

2
) + cosh(

x2

2
) −

1

2

)
(1 − r)

)
.
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Figure 4. The (i)- and (ii)-solutions of Example 5.3.

In Figure 4, (i)- and (ii)-solutions are illustrated. The (ii)-solution is compared

with the results of [4] and [14] (see Figure 4-right). It is clearly observed that,

for the present method, the uncertainty vanishes at a slower rate than the

other two methods. This makes the (ii)-solution valid over a larger interval.

As seen, the validity interval of the solution in our method is [0, 1.17] while, it is

[0, 0.816], and [0, 0.707] for the methods presented in [4], and [14], respectively.

Also, in contrast to the previous works, our method provides a (i)-solution (see

Figure 4-left).

Conclusion and future research

The linear first order differential equation with fuzzy variable coefficients

and fuzzy initial value was solved analytically. We modified the MCE-product

and used it for the concept of fuzzy multiplication appeared in the equation.

Depending on the type of GH-differentiability, two types of solution called (i)-

and (ii)-solutions were proposed. Some examples were given that show the

efficiency of the proposed method compared to the previous methods available

in the literature (see examples 5.2 and 5.3). For the future work, we suggest to

use modified MCE-product for obtaining the analytical solution of the higher

order fuzzy differential equations.
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19. G. Eslami, E. Esmaeilzadeh, A. T. Pérez, Modeling of Conductive Particle Motion in

Viscous Medium Affected by an Electric Field Considering Particle-electrode Interactions

and Microdischarge Phenomenon, Physics of Fluids, 28(10), (2016), 107102.

20. G. Estami, E. Esmaelzadeh, P. Garcia-Sanchez, A. Behzadmehr, S. Baheri, Heat Transfer

Enhancement in a Stagnant Dielectric Liquid by the Up and Down Motion of Conductive

Particles Induced by Coulomb Forces, J. Appl. Fluid Mech., 10, (2017), 169-182.
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