Volume 20, Issue 2 (9-2025)                   IJMSI 2025, 20(2): 191-207 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amritha V C, Subajini M, Selvakumar K. The Cozero-divisor Graph of a Commutative Ring: A Survey. IJMSI 2025; 20 (2) :191-207
URL: http://ijmsi.ir/article-1-1956-en.html
Abstract:  
In 2011, M. Afkhami and K. Khashyarmanesh introduced the cozero-divisor graph. Let R be a commutative ring with identity and let W(R) be the set of all non-zero non-unit elements of R. The cozerodivisor graph Γ′(R) of R is a simple graph with the vertex set W(R), and two distinct vertices a and b are adjacent if and only if a ∉ bR and b ∉ aR. In this paper, we offer a survey of results on cozero-divisor graph of commutative rings.
Type of Study: Research paper | Subject: General

References
1. M. Afkhami, Z. Barati, K. Khashyarmanesh, Planar Zero Divisor Graphs of Partially Ordered Sets, Acta Math. Hungar., 137, (2012), 27-35. [DOI:10.1007/s10474-012-0231-6]
2. M. Afkhami, M. Farrokhi D. G., K. Khashyarmanesh, Planar, Outerplanar and Ring Graph Cozero-divisor Graphs, Ars Combin., 131, (2017), 397-406.
3. M. Afkhami, K. Khashyarmanesh, The Cozero-Divisor Graph of a Commutative Ring, Southeast Asian Bull. of Math., 35(5), (2011), 753-762.
4. M. Afkhami, K. Khashyarmanesh, Planar, Outerplanar, and Ring Graph of the Cozerodivisor Graph of a Finite Commutative Ring, J. Algebra Appl., 11(6), (2012), 1250103. [DOI:10.1142/S0219498812501034]
5. M. Afkhami, K. Khashyarmanesh, On the Cozero- Divisor Graphs of Commutative Rings and their Complements, Bull. Malays. Math. Sci. Soc., 35(4), (2012), 935-944.
6. M. Afkhami, K. Khashyarmanesh, On the Cozero-divisor Graphs of Commutative Rings, Applied Math., 4, (2013), 979-985. [DOI:10.4236/am.2013.47135]
7. M. Afkhami, K. Khashyarmanesh, On the Cozero-divisor Graphs and Comaximal Graphs of Commutative Rings, J. Algebra Appl., 12, (2013), 1250173. [DOI:10.1142/S0219498812501733]
8. S. Akbari, K. Khojasteh, Commutative Rings whose Cozero-divisor Graphs are Unicyclic or of Bounded Degree, Comm. Algebra, 42(4), (2014), 1594-1605. [DOI:10.1080/00927872.2012.745867]
9. S. Akbari, F. Alizadeh, K. Khojasteh, Some Results on Cozero-divisor Graph of a Commutative Ring, J. Algebra and its Appl., 13(3), (2014), 1350113. [DOI:10.1142/S0219498813501132]
10. S. Akbari, H. R. Maimani, S. Yassemi, When a Zero Divisor Graph is Planar or a Complete r-partite Graph, J. Algebra, 270, (2003), 169-180. [DOI:10.1016/S0021-8693(03)00370-3]
11. S. Akbari, A. Mohammadian, On the Zero Divisor Graph of a Commutative Ring, J. Algebra, 274, (2004), 847-855. [DOI:10.1016/S0021-8693(03)00435-6]
12. A. Alibemani, E. Hashemi, A. Alhevaz, The Cozero-divisor Graph of a Module, AsianEuropean J. Mathematics, 11(6), (2018), 1850092. [DOI:10.1142/S1793557118500924]
13. D. F. Anderson, P. S. Livingston, The Zero Divisor Graph of a Commutative Ring, J. Algebra, 217, (1999), 434 - 447. [DOI:10.1006/jabr.1998.7840]
14. D. F. Anderson, R. Levy, J. Shapiro, Zero Divisor Graphs Von Neumann Regular Rings and Boolean Algebras, J. Pure and Applied Algebra, 180, (2003), 221 - 241. [DOI:10.1016/S0022-4049(02)00250-5]
15. D. D. Anderson, M. Naseer, Beck's Coloring of Commutative Ring, J. Algebra, 274, (1993), 500-514. [DOI:10.1006/jabr.1993.1171]
16. H. Ansari-Toroghy, F. Farshadifar, Sh. Habibi, The Cozero-divisor Graph Relative to Finitely Generated Modules, Miskolc Math. Notes HU, 14(3), (2013), 749-756. [DOI:10.18514/MMN.2013.762]
17. M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
18. I. Beck, Coloring of Commutative Rings, J. Algebra, 116, (1988), 208-226. [DOI:10.1016/0021-8693(88)90202-5]
19. M. Behboodi, Zero Divisor Graphs of Modules over a Commutative Rings, Journal of Commutative Algebra, 4(2), (2012), 175-197. [DOI:10.1216/JCA-2012-4-2-175]
20. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976. [DOI:10.1007/978-1-349-03521-2]
21. J. Cain, L. Mathewson, A. Wilkens, Graphs and Principal Ideals of Finite Commutative Rings, Rose-Hulman Undergraduate Math J., 11(2), Article 5, (2010).
22. G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth and Brooks/Cole, Monterey, CA, 1986.
23. N. Ganesan, Properties of Rings with a Finite Number of Zero Divisors - II, Mathematische Annalen, 161, (1965), 241-246. [DOI:10.1007/BF01359907]
24. S. Kavitha, R. Kala, On the Genus of Graphs from Commutative Rings, AKCE Inter. J. of Graphs and Combin., 14, (2017), 27-34. [DOI:10.1016/j.akcej.2016.11.006]
25. A. Mallika, R. Kala, Rings whose Cozero-divisor Graph has Crosscap Number at most Two, Dis. Math. Alg. Appl., 9(6), (2017), 1750074. [DOI:10.1142/S1793830917500744]
26. A. R. Naghipour, The Zero Divisor Graph of a Module, J. Algebr. Syst., 4(2), (2017), 155-171.
27. A. Wilkens, J. Cain, L. Mathewson, Reduced Cozero-divisor Graphs of Commutative Rings, Inter. J. Algebra, 5(19), (2011), 935 - 950.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb