Volume 12, Issue 2 (9-2017)                   IJMSI 2017, 12(2): 141-153 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dhara B, Pradhan K, Tiwari S. Left Annihilator of Identities Involving Generalized Derivations in Prime Rings. IJMSI 2017; 12 (2) :141-153
URL: http://ijmsi.ir/article-1-845-en.html

Let $R$ be a prime ring with its Utumi ring of quotients $U$,  $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate}
item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=mp x$ for all $x in R$; item char $(R)=2$ and $R$ satisfies $s_4$;item char $(R) neq 2$, $R$ satisfies $s_4$ and there exists $bin U$ such that $F(x)=bx$ for all $x in R$.

Type of Study: Research paper | Subject: General

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb