Volume 13, Issue 1 (5-2018)                   IJMSI 2018, 13(1): 111-129 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shokri A, Saadat H, Khodadadi A R. A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation. IJMSI 2018; 13 (1) :111-129
URL: http://ijmsi.ir/article-1-785-en.html
Abstract:  

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant literature and the references here). In this paper we study the closed Newton-Cotes formulae and we write them as symplectic multilayer structures. Based on the closed Newton-Cotes formulae, we also develop trigonometrically-fitted symplectic methods. An error analysis for the onedimensional Schrodinger equation of the new developed methods and a comparison with previous developed methods is also given. We apply the new symplectic schemes to the well-known radial Schr¨odinger equation in order to investigate the efficiency of the proposed method to these type of problems.

Type of Study: Research paper | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb