Volume 20, Issue 2 (9-2025)                   IJMSI 2025, 20(2): 17-29 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Linzi A, Stojałowska H. Hypervaluations on Hyperfields and Ordered Canonical Hypergroups. IJMSI 2025; 20 (2) :17-29
URL: http://ijmsi.ir/article-1-2055-en.html
Abstract:  

We study the concept of hypervaluations on hyperfields. The main aim of this paper is to show that any hypervaluation from a hyperfield onto an ordered canonical hypergroup is the composition of a hypervaluation onto an ordered abelian group (which induces the same valuation hyperring) and an order preserving homomorphism of hypergroups. This implies that the generalization of hypervaluations proposed in [13] can be reduced to the original definition of hypervaluation given by Davvaz and Salasi in [4]. Moreover, we provide counterexamples to some assertions which appear in [13].

Type of Study: Research paper | Subject: Special

References
1. P. Corsini, V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Advances in Mathematics, 5, Kluwer Academic Publishers, Dordrecht, 2003. [DOI:10.1007/978-1-4757-3714-1]
2. B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
3. S. Omidi, B. Davvaz, Ordered Krasner Hyperrings, Iranian Journal of Mathematical Sciences and Informatics, 12(2), (2017), 35-49.
4. B. Davvaz, A. Salasi, A Realization of Hyperrings, Communications in Algebra, 34(12), (2006), 4389-4400. [DOI:10.1080/00927870600938316]
5. J. Flenner, Relative Decidability and Definability in Henselian Valued Fields, Journal of Symbolic Logic, 76(4), (2011), 1240-1260. [DOI:10.2178/jsl/1318338847]
6. J. Jun, Algebraic Geometry Over Hyperrings, Advances in Mathematics, 323, (2018), 142-192. [DOI:10.1016/j.aim.2017.10.043]
7. M. Krasner, Approximation Des Corps Valu'es Complets de Caract'eristique p ̸= 0 Par Ceux de Caract'eristique 0, Colloque d'Alg'ebre sup'erieure, Bruxelles, 1956, pp. 129-206,.
8. M. Krasner, A Class of Hyperrings and Hyperfields, International Journal of Mathematics and Mathematical Sciences, 6, (1983), 307-311. [DOI:10.1155/S0161171283000265]
9. F.-V. Kuhlmann, Quantifier Elimination for Henselian Fields Relative to Additive and Multiplicative Congruences, Israel Journal of Mathematics, 85, (1994), 277-306. [DOI:10.1007/BF02758645]
10. J. Lee, Hyperfields, Truncated DVRs and Valued Fields, Journal of Number Theory, 212, (2020), 40-71. [DOI:10.1016/j.jnt.2019.10.019]
11. M. Marshall, Real Reduced Multirings and Multifields, Journal of Pure and Applied Algebra, 205, (2006), 452-468. [DOI:10.1016/j.jpaa.2005.07.011]
12. F. Marty, Sur Une g'en'eralisation de La Notion de Groupe, 8th Congress Math. Scandenaves, Stockholm, 1934, pp. 45-49.
13. Kh. Mirdar Harijani, S. M. Anvariyeh, A Hypervaluation of a Hyperfield Onto a Totally Ordered Canonical Hypergroup, Studia Scientiarum Mathematicarum Hungarica, 52(1), (2015), 87-101. [DOI:10.1556/sscmath.52.2015.1.1303]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb