Volume 6, Issue 1 (5-2011)                   IJMSI 2011, 6(1): 79-96 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Broojerdian N, Peyghan E, Heydari A. Differentiation along Multivector Fields. IJMSI. 2011; 6 (1) :79-96
URL: http://ijmsi.ir/article-1-195-en.html

The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and other familiar concepts. Also in spinor bundles, we introduce a covariant derivation along multivector fields and call it the Clifford covariant derivation of that spinor bundle, which is related to its structure and has a natural relation to its Dirac operator.

Type of Study: Research paper | Subject: General

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb