Volume 6, Issue 1 (5-2011)                   IJMSI 2011, 6(1): 79-96 | Back to browse issues page

DOI: 10.7508/ijmsi.2011.01.007

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Broojerdian N, Peyghan E, Heydari A. Differentiation along Multivector Fields. IJMSI. 2011; 6 (1) :79-96
URL: http://ijmsi.ir/article-1-195-en.html


The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and other familiar concepts. Also in spinor bundles, we introduce a covariant derivation along multivector fields and call it the Clifford covariant derivation of that spinor bundle, which is related to its structure and has a natural relation to its Dirac operator.

Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:
Write the security code in the box

© 2015 All Rights Reserved | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb