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Abstract. The Lie derivation of multivector fields along multivector

fields has been introduced by Schouten (see [10, 11]), and studdied for

example in [5] and [12]. In the present paper we define the Lie derivation

of differential forms along multivector fields, and we extend this con-

cept to covariant derivation on tangent bundles and vector bundles, and

find natural relations between them and other familiar concepts. Also

in spinor bundles, we introduce a covariant derivation along multivector

fields and call it the Clifford covariant derivation of that spinor bundle,

which is related to its structure and has a natural relation to its Dirac

operator.
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1. Introduction

The Schouten-Nijenhuis bracket was discovered by J. A. Schouten (see [10,
11]), and A. Nijenhuis established, in [7], its main properties. A strong renewal
of interest in that bracket occurred when A. Lichnerowicz began to consider
generalizations of symplectic or contact structures which involve contravariant
tensor fields rather than differential forms.
The Properties of the Schouten-Nijenhuis bracket were very actively investi-
gated in the last years [5, 8], as well as its very numerous applications, in
particular to Poisson geometry and Poisson cohomology [3, 8, 13, 14, 17], bi-
hamiltonian manifolds and integrable systems [4], Poisson-Lie groups [1].

In [10], Schouten introduced the differential invariant of two purely con-
travariant tensor fields. Then in [7], Nijenhuis showed that for skew symmetric
contravariant tensor fields (also called skew multivector fields) this satisfies the
Jacobi identity and gives at the same time a structure of a graded Lie alge-
bra to the space of all multivector fields. The same is true for the symmetric
multivector fields. In [12], Tulczyjew gave a coordinate free treatment of the
bracket for skew multivector fields and clarified its relation to certain differen-
tial operators on the space of differential forms, which are similar to those of
the better known and more important Frolicher-Nijenhuis bracket for tangent
bundle valued different forms.

In the paper [6], the authours have studied the algebra of derivation of scalar
and vector-valued forms along the tangent bundle projection τ : TM → M .
Spinor bundle and Dirac operator have important applications in various fields
including geometry and theoretical physics [15, 16]. For this reason, in this
paper, we introduce a covariant derivation along multivector fields in a Spinor
bundle and find some relation between it and the corresponding Dirac operator.

2. Preliminaries

First, we recall some notations from multilinear algebra. In this paper V

is an arbitrary n dimensional real vector space. The dual of V is denoted
by V ∗ and its l-outer product is denoted by ΛlV . The elements of ΛlV and
ΛlV ∗ are called respectively l-vectors and l-forms on V . Λ0V = R, and set
ΛV = ⊕n

l=0Λ
lV . For a vector v ∈ V , the outer product of l-vectors by v is an

operator which is denoted by μv, while the interior product with v of l-forms
is an operator denoted by iv.

μv : ΛlV −→ Λl+1V

X �−→ v ∧X
,

iv : ΛlV ∗ −→ Λl−1V ∗

X �−→ iv(X).

For blade k-vectors (1 ≤ k)v1 ∧ · · · ∧ vk, the operators μv1∧···∧vk
and iv1∧···∧vk

are defined by

μv1∧···∧vk
= μv1 ◦ · · · ◦ μvk

, iv1∧···∧vk
= ivk

◦ · · · ◦ iv1 .
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These definitions are well defined and extend linearly to all k-vectors X ∈ ΛkV

μX : ΛlV −→ Λl+kV , iX : ΛlV ∗ −→ Λl−kV ∗

Then for scalars λ ∈ R, the operators μλ and iλ are both equal to the operator
multiplication by λ.

The operators μX and iX can be extended linearly to all X ∈ ΛV and
operate respectively on ΛV and ΛV ∗. For the natural product between ΛlV

and ΛlV ∗ (l = 0, . . . , n), μX and iX are dual to each other (see [2]). For all
X ∈ ΛkV, Y ∈ ΛlV and ω ∈k+l V ∗ we have

< ω, μX(Y ) >=< iX(ω), Y > .

Similarly, for each k-form ω ∈ ΛkV ∗ the operators μω : ΛlV ∗ −→ Λl+kV ∗ and
iω : ΛlV −→ Λl−kV with the same properties can be defined.

To each nonzero n-form Ω ∈ ΛnV ∗, one can associate a Hodge operator
HΩ : ΛlV −→ Λn−lV ∗ which is defined by HΩ(X) = iXΩ. If Ω∗ ∈ ΛnV is the
dual of Ω, then we also define H ′

Ω : ΛlV ∗ −→ Λn−lV by H ′
Ω(ω) = iωΩ∗.

Let {ei}ni=1 be a basis of V , {αi}ni=1 its dual basis and Ω = α1 ∧ · · · ∧ αn.
Then Ω∗ = e1 ∧ · · · ∧ en and for any transformation σ ∈ Sn we have

HΩ(eσ(1) ∧ · · · ∧ eσ(l)) = εσασ(l+1) ∧ · · · ∧ ασ(n),

H ′
Ω(ασ(1) ∧ · · · ∧ ασ(l)) = εσeσ(l+1) ∧ · · · ∧ eσ(n).

The Hodge operators HΩ and H ′
Ω are nearly inverse to each other and the

following relations hold.

ΛlV
←→ Λn−lV ∗, HΩ ◦H ′

Ω = (−1)l(n−l)1 , H ′
Ω ◦HΩ = (−1)l(n−l)1.

For all X ∈ ΛkV , the operators μX and iX make the following diagram
commutative.

ΛlV
μX−−→ Λl+kV

HΩ ↓ ↓ HΩ HΩ ◦ μX = (−1)lkiX ◦HΩ

Λn−lV ∗ (−1)lkiX−−→ Λn−l−kV ∗

In fact, for every X ∈ ΛkV and Y ∈ ΛlV , we have

HΩ(X ∧ Y ) = (−1)lkiXHΩ(Y ) = iY HΩ(X).

We can also deduce that for every ω ∈ ΛkV ∗ and Y ∈ ΛlV

HΩ(iω(Y )) = (−1)k(l+1)ω ∧HΩ(Y ).

In this paper, M is a n-dimensional manifold and f, g ∈ C∞(M). The set
of C∞ sections of Λk(TM) is denoted by Xk(M) and they are called k-vector
fields on M . Also the set of C∞ sections of Λk(TM∗) is denoted by Ak(M)
and these are k-differential forms on M .

Clearly, X0(M) = A0(M) = C∞(M), and X1(M) = X(M). Set A(M) =
⊕n

k=0A
k(M) and X∗(M) = ⊕n

k=0X
k(M). For each k-vector field U ∈ Xk(M),
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μU : Xl(M) −→ Xl+k(M) and iU : Al(M) −→ Al−k(M) are defined pointwise.
For a volume element Ω ∈ An(M)(∀p ∈ M Ωp �= 0) Hodge operator HΩ :
Xl(M) −→ An−l(M) is defined pointwise. Clearly, the same relations also hold
for these operators.

3. Lie derivation along multivector fields

For a blade k-vector field U = U1 ∧ · · · ∧ Uk(1 ≤ k) on M and a l-vector
field V ∈ Xl(M), Lie derivation of V along U , is denoted by LUV and defined
as follows

LUV =
k∑

j=1

(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ LUj V.

This definition can be extended to all k-vector fields and this is Schouten
bracket of multivector fields, which generalizes the notion introduced in [10, 11]
and studied in [5]. For U ∈ Xk(M), LU is an operator X1(M) LU−→ Xl+k−1(M),
and for k = 1, LU is the ordinary Lie derivation. For the function f , LUf ∈
Xk−1(M) and we denote it by U(f). For U ∈ Xk(M), V ∈ Xl(M) and
W ∈ X�(M), the following relations hold

U(f) = idf (U),(1)

LfUV = fLUV + (−1)kU ∧ V (f),(2)

LUV = (−1)klLV U,(3)

LU (V ∧W ) = LUV ∧W + (−1)l(k−1)V ∧ LUW,(4)

LU∧V W = (−1)kU ∧ LV W + (−1)l(k−1)V ∧ LUW.(5)

These relations lead us to define Lfg = 0 and LfV = V (f), for V ∈ X�(M). To
extend the definition to Lie derivation of differential forms along multivector

fields, it is useful to define the operator A :

k times︷ ︸︸ ︷
XM × · · · × XM−→ Xk−1(M)(2 ≤

k), as follows

A(U1, · · · , Uk) =
∑

1≤i<j≤k
(−1)i+j [Ui, Uj] ∧ U1 ∧ · · · ∧ Ûi ∧ · · · ∧ Ûj ∧ · · · ∧ Uk

= 1
2

∑k
j=1(−1)jLUj (U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk).

The operator A is alternating but it can not be considered as an operator on
Xk(M), because the value of A(U1, · · · , fUjo, · · · , Uk) does depend on jo. In
fact

A(U1, · · · , fUj0 , · · · , Uk) = fA(U1, · · · , Uk)− (U1 ∧ · · · ∧ Uk)(f)
+(−1)j0+1Uj0(f)U1 ∧ · · · ∧ Ûj0 ∧ · · · ∧ Uk.
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For the case k = 1, set A(U) = 0. The following relation helps us in the
computations in which A is involved.

A(U1, · · · , Uk, V1, · · · , Vl) = A(U1, · · · , Uk) ∧ V1 ∧ · · · ∧ Vl

+(−1)kU1 ∧ · · · ∧ Uk ∧ A(V1, · · · , Vl) − LU1∧···∧Uk
(V1 ∧ · · · ∧ Vl).

The operator A can be used to define exterior derivation as follows (see [9])

< dω, U1 ∧ · · · ∧ Uk > =
∑k

j=1(−1)j+1Uj < ω, U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk >

+ < ω, A(U1, · · · , Uk) >,

where and U1, · · · , Uk ∈ X�(M).
Now , we can define the Lie derivation of differential forms along multivector
fields,

LU (ω) =
k∑

j=1

(−1)j+1iU1∧···∧Ûj∧···∧Uk
(LUj ω)− iA(U1,··· ,Uk)(ω),

where ω ∈ A(M) and a blade k- vector field U = U1 ∧ · · · ∧ Uk(1 ≤ k). This
Lie derivation is well defined and we can extend it along all the k-vector fields
U by LU : Al(M) −→ Al−k+1(M). It has the following properties

LfU (ω) = fLU (ω) + (−1)k+1df ∧ iU (ω),(6)

LU (fω) = fLU (ω) + iU(f)(ω),(7)

LU (ω) = iU (dω) + (−1)k+1d(iUω),(8)

d(LUω) = (−1)k+1LU (dω),(9)

LU∧V (ω) = iV (LUω) + (−1)kLV (iUω),(10)

LU (iV ω) = (−1)l(k−1)(iV (LUω) + iLUV (ω)),(11)

where U ∈ Xk(M), V ∈ Xl(M) and ω ∈ A(M). The above relations can be
straightforwardly verified, although some of the computations are quite long.

Relation (6) suggests us to define Lg(ω) = −dg ∧ ω, for ω ∈ A(M). Clearly
all above relations also hold for the case U = g. Note that for U ∈ Xk(M) and
ω ∈ Ak−1(M), we have LU (ω) ∈ C∞(M) and in fact LU (ω) =< dω, U >.

4. Covariant Derivations along Multivector Fields

Let ∇ be a connection on TM . For each vector field U ∈ XM , the covariant
differentiation of l- vector fields along U is the operator∇U : Xl(M) −→ Xl(M).
Note that for the case l = 0, ∇Uf is defined as U(f). Now, we extend this
concept for blade k-vector fields U = U1 ∧ · · · ∧ Uk (1 ≤ k) as follows

∇UV = Σk
j=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧∇Uj V, ∀V ∈ X∗(M).

This operator is well defined and the definition can be extended to covariant
differentiation along blade k-vector fields by ∇U : Xl(M) −→ Xl+k−1(M). In
the case when k = 0 the properties of this operator lead us to define ∇fV = 0
and they can be extended to all U ∈ X�(M).
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Theorem 4.1. For U ∈ Xk(M), V ∈ Xl(M), W ∈ X�(M), we have

∇fUW = f∇UW,(12)

∇U (fW ) = f∇UW + U(f) ∧W,(13)

∇U∧V W = (−1)kU ∧∇V W + (−1)l(k−1)V ∧∇UW,(14)

∇U (V ∧W ) = ∇UV ∧W + (−1)l(k−1)V ∧∇UW.(15)

If ∇ be torsion free, then

(16) LUV = ∇UV + (−1)lk∇V U.

Proof. All these relations can be checked by direct computation, so we
prove only (16). We can assume U = U1 ∧ · · · ∧Uk , V = V1 ∧ · · · ∧ Vl. Then
we have

LUV = LU1∧···∧UkV1 ∧ · · · ∧ Vl =
∑k

j=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ LUj (V1 ∧
· · · ∧ Vl)

=
∑k

j=1

∑l
i=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ V1 ∧ · · · ∧ LUj Vi ∧ · · · ∧ Vl

=
∑k

j=1

∑l
i=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ V1 ∧ · · · ∧ (∇UjVi −∇ViUj) ∧ · · · ∧ Vl

=
∑k

j=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ (
∑l

i=1 V1 ∧ · · · ∧ ∇Uj Vi ∧ · · · ∧ Vl)

−∑l
i=1(−1)j+1+j−1+l−i+l(k−1)V1∧· · ·∧V̂i∧· · ·∧Vl∧(

∑k
j=1 U1∧· · ·∧∇ViUj∧· · ·∧Uk)

=
∑k

j=1(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧∇Uj (V1 ∧ · · · ∧ Vl)

+ (−1)kl ∑l
i=1(−1)i+1V1 ∧ · · · ∧ V̂i ∧ · · · ∧ Vl ∧∇Vi(U1 ∧ · · · ∧ Uk)

= ∇UV + (−1)kl∇V U. �

For a connection ∇, the covariant derivation of differential forms along vector fields

U ∈ X(M) is an operator ∇U : Al(M) −→ Al(M). We can extend this concept for

blade k-vector fields U = U1 ∧ · · · ∧ Uk(1 ≤ k) as follows

∇Uω =
∑

(−1)j+1iU1∧···∧Ûj∧···Uk
(∇Uj ω), ∀ω ∈ A(M).

This operator is well defined and it can be extended to all U ∈ Xk(M), by ∇U :

Al(M) −→ Al−k+1(M). In the case k = 0, it is convenient to define ∇fω = 0, so this

operator linearly extens to all U ∈ X∗(M).

Theorem 4.2. For U ∈ Xk(M) and ω ∈ A(M), the following relations hold

∇fUω = f∇Uω,(17)

∇U (fω) = f∇Uω + iU(f)(ω),(18)

∇U∧V ω = iV (∇Uω) + (−1)kliU (∇V ω),(19)

∇U (iV ω) = (−1)l(k−1)(iV (∇Uω) + i∇U V (ω)).(20)

If ∇ be torsion free, and ω ∈ Ak−1(M), then
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(21) ∇Uω = LUω =< dω,U > .

Proof. Direct computations prove all the above relations. We prove only (19).

We can assume U = U1 ∧ · · · ∧ Uk and V = V1 ∧ · · · ∧ Vl. Then we have

∇U∧V ω = ∇U1∧···∧Uk∧V1∧···∧Vlω =
k∑

j=1

(−1)j+1i(U1∧···∧Ûj ···∧Uk∧V1∧···∧Vl)
(∇Ujω)

+

l∑
i=1

(−1)k+i+1i(U1∧···∧Uk∧V1∧···∧V̂i···∧Vl)
(∇Viω)

= iV1∧···∧Vl(
k∑

j=1

(−1)j+1iU1∧···∧Ûj ···∧Uk
(∇Uj ω))

+ (−1)k+k(l−1)iU1∧···∧Uk(
l∑

i=1

(−1)i+1iV1∧···∧V̂i···∧Vl
)(∇Viω))

= iV (∇Uω) + (−1)kliU (∇V ω). �

Now, it is natural that for every ω ∈ Ak(M) and U ∈ Xl(M) to define ∇ωU as a

(k − l + 1)-differential form by the following relation

< ∇ωU,V >=< ω,∇UV >, ∀V ∈ Xk−l+1(M).

So, for ω ∈ Ak(M), ∇ω : Xl(M) −→ Ak−l+1(M).

Theorem 4.3. For U ∈ Xk(M), V ∈ Xl(M) and ω ∈ Am(M), the following relations

hold

∇fωU = f∇ωU,(22)

∇ω(fU) = f∇ωU + (−1)k(m+1)df ∧ iUω,(23)

∇ω(U ∧ V ) = (−1)lmiV (∇ωU) + (−1)k(l+m)iU (∇ωV ) + (−1)m(k+l)+1iLU V (ω).(24)

If ∇ be torsion free, then

(25) LUω = ∇Uω − (−1)km∇ωU.

Proof. Direct computations prove all the above relations. For example we prove

(25). For W ∈ Xm−k+1(M), we have

< LUω,W > = iW (LUω) = LU∧W ω − (−1)kLW (iUω)

= ∇U∧W ω − (−1)k∇W (iUω)

= iW (∇Uω) + (−1)k(m−k+1)iU (∇W ω) − (−1)k+k(m−k)(iU (∇W ω)+

i∇W U (ω))

=< ∇Uω, W > −(−1)km < ω,∇W U >

=< ∇Uω − (−1)km∇ωU, W > . �
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5. Divergence

Consider a fixed volume element Ω on the manifold M . Associated to Ω, there

exists a dual operator to the exterior derivation d : Ak(M) −→ Ak+1(M) which is

called divergence operator. This is a homogenous differential operator on multivector

fields of degree −1, δ : Xk(M) −→ Xk−1(M), and defined as follows (see [9])

An−k(M)
d−→ An−k+1(M)

HΩ ↑ ↓ H ′
Ω δ = (−1)n(k+1)+1H ′

Ω ◦ d ◦ HΩ

Xk(M)
(−1)n(k+1)+1δ−→ Xk−1(M)

δ depends on Ω, but for any nonzero scalar λ, changing Ω to λΩ does not change δ.

Theorem 5.1. For U ∈ Xk(M), V ∈ X∗(M), and ω ∈ Am(M), the following

relations hold for the divergence operator

δ2 = 0,(26)

HΩ(δU) = −LUΩ,(27)

δU = (−1)(n+1)(k+1)+1H ′
Ω(LUΩ),(28)

δ(fU) = fδU − U(f),(29)

δ(U ∧ V ) = δU ∧ V + (−1)kU ∧ δV − LUV,(30)

δ(LUV ) = −LδUV + (−1)k+1LU δV,(31)

δ(iωU) = (−1)m(iωδU − idωU).(32)

Proof. We prove only (30). If V ∈ Xl(M), then we have

δ(U ∧ V ) = (−1)(n+1)(k+l+1)+1H ′
Ω(LU∧V Ω)

= (−1)(n+1)(k+l+1)+1H ′
Ω(iV (LUΩ) + (−1)kLV (iUΩ))

= (−1)(n+1)(k+l+1)+1H ′
Ω(iV (LUΩ) + (−1)k+k(l+1)(iU (LV Ω) + iLV UΩ))

= (−1)(n+1)(k+l+1)+1((−1)l(n−k)V ∧ H ′
Ω(LUΩ) + (−1)kl+k(n−l)U ∧ H ′

Ω(LV Ω)

+ (−1)klH ′
ΩHΩ(LV U))

= (−1)l(k+1)V ∧ δU + (−1)kU ∧ δV + (−1)kl+1LV U

= δU ∧ V + (−1)kU ∧ δV − LUV. �

Let ∇ be a torsion free connection on M , and {Ei}n
i=1 a local basis of vector fields

and {αi}n
i=1 its dual basis of local 1-differential forms. Then for any ω ∈ A(M), dω

can be expressed by [9]

dω =
n∑

i=1

αi ∧∇Eiω.

Also, if ∇Ω = 0, then for any U ∈ X∗(M), δU can be expressed by

δU = −
n∑

i=1

iαi(∇EiU).
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6. Differentiation in Clifford Bundles

In this section, first we recall some preliminary notions. Let V be a n dimen-

sional real inner product vector space. we can identify V and V ∗ via the following

isomorphisms

# : V −→ V ∗ , b : V ∗ −→ V

v#(u) =< v, u > , < αb, v >= α(v),

Where u, v ∈ V and α ∈ V ∗. These isomorphisms are inverse to each other and they

can be extended to isomorphism between ΛkV and ΛkV ∗ with the same properties.

If V is oriented, then V has a canonical volume element Ω ∈ ΛnV ∗. If {ei}n
i=1 is a

positive oriented orthonormal basis, (< ei, ej >= ±δij), and {αi}n
i=1 is its dual basis,

then Ω = α1∧· · ·∧αn and Ω do not depend on the choice of the basis. Then, we have

the canonical Hodge operators HΩ and H ′
Ω. By identification of ∧kV and ∧kV ∗,HΩ

and H ′
Ω give rise to the operators H,H ′ : ∧kV −→ ∧n−kV defined by the following

relations

H(U) = HΩ(U)b, H ′(U) = H ′
Ω(U#).

If inner product of V is of the type (r, s), then H ′ = (−1)sH . For any U ∈ ∧kV , the

interior product operator iU can be considered as an operator from ∧lV to ∧l−kV as

follows

iUW = (iUW #)b = iU#W, ∀W ∈ ∧lV.

The perivious properties of Hodge operator hold in this case. For example, if U ∈ ∧kV

and W ∈ ∧lV , then

H(U ∧ W ) = (−1)kiiUH(W ),

H(iU (W )) = (−1)k(l+1)U ∧ H(W ).

Now, if M is a semi-Riemannian oriented n-dimensional manifold, then all above

notions hold pointwise in the fibers of TM , and we can identify Ak(M) and Xk(M)

by the following isomorphisms

Xk(M)
#−→ Ak(M), Ak(M)

b−→ Xk(M).

There exists a canonical volume element Ω ∈ An(M), and we get the canonical Hodge

operator H : Xk(M) −→ Xn−k(M). Now, we can reduce all operators with domain

and range X∗(M) or A(M) to operators whose domains and ranges are X∗(M). For

example, for U ∈ Xk(M), we define iU : Xl(M) −→ Xl−k(M) as follows

iUV = iU# (V ) = (iUV #)b.

Lie derivation LU : Al(M) −→ Al−k+1(M), defines a derivation

L′
U : Xl(M) −→ Xl−k+1(M),

V −→ (LUV #)b.

The exterior derivation d : Ak(M) −→ Ak+1(M) induces an operator

d̄ : Xk(M) −→ Xk+1(M),

U −→ (dU#)b.
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For a local orthonormal basis {Ei}n
i=1(< Ei, Ej >= ±δij) of M , set ĵ =< Ej , Ej >.

If ∇ is the Levi-civita connection of M , then for every U ∈ X∗(M), we have

d̄(U) =
n∑

j=1

ĵ Ej ∧∇Ej U,

δU = −
n∑

j=1

ĵ iEj (∇Ej U).

For U ∈ Xk(M) and w ∈ Ak(M), the operators

∇U : Al(M) −→ Al−k+1(M), ∇ω : Xl(M) −→ Ak−l+1(M),

induce the following operators

∇′
U : Xl(M) −→ Xl−k+1(M) , ∇′′

U : Xl(M) −→ Xk−l+1(M)

∇′
UV = (∇UV #)b , ∇′′

UV = (∇U#V )b.

By (17) − (25), we can find similar relations for these operators. For example from

relation (25) , for U ∈ Xk(M) and V ∈ Xl(M) we can infer

L′
UV = ∇′

UV − (−1)kl∇′′
V U.

Let us denote the Clifford algebra of each TpM by Cl(TpM). Then we can construct

the Clifford bundle of M , Cl(TM) = ∪p∈MCl(TpM). Cl(TM), as a vector bundle, is

isomorphic to ∧TM , and its sections are multivector fields (see [9]). For U ∈ X∗(M),

we can consider all the operators LU , L′
U , d̄, δ,∇U ,∇′

U ,∇′′
U , as operators which act on

the sections of Cl(TM) and yield sections of Cl(TM). But the Clifford multiplication

of Cl(TM) gives it a new structure and this new structure produce a new covariant

derivation. For a blade k- vector field U = U1 ∧ · · · ∧ Uk(1 ≤ k) and a multivector

field V , we define

∇̂UV =
k∑

j=1

(−1)j+1(U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk)∇Uj V.

The above multiplication between U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk and ∇Uj V is Clifford

multiplication. This operator is well defined and the definition can be extended along

all U ∈ X∗(M). For the case k = 0, we define ∇̂fV = 0, so this operator can

be extended linearly to all U ∈ X∗(M). We call this operator Clifford covariant

derivation of Cl(TM). Clearly, if U ∈ X1(M), then for all V ∈ ΓCl(TM)

∇̂UV = ∇UV = ∇′
UV,

And, if U ∈ X2(M), then

∇̂UV = ∇UV −∇′
UV,

Theorem 6.1. For vector fields U1, · · · , Uk and U, V ∈ X∗(M) the following relations

hold

∇̂fUV = f∇̂UV,(33)

∇̂UfV = f∇̂UV + U(f)V,(34)

∇̂U1···UkV =

k∑
j=1

(−1)j+1U1 · · · Ûj · · ·Uk∇Uj V.(35)
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Proof. We prove only (35). Suppose {Ei}n
i=1 is a local orthonormal basis of

vector fields on M . Due to the C∞(M)- linearity of both sides of (35) with respect

to U1, · · · , Uk, it is sufficient to prove (35) in the case when U1, · · · , Uk are between

E1, · · · , En. First assume that U1 = Ei1 , · · · , Uk = Eik and i1, · · · , ik are mutually

distinct. Then we have

∇̂Ei1 ···Eik
V = ∇̂Ei1∧···∧Eik

V =
k∑

j=1

(−1)j+1(Ei1 ∧ · · · ∧ Êij ∧ · · · ∧ Eik)∇Eij
V

=
k∑

j=1

(−1)j+1Ei1 · · · Êij · · ·Eik∇Eij
V.

If two of Ei1 , · · · , Eik are equal, then a simple computation shows that the equality

remains valid. By induction we can infer that the equality is valid in general case. �

The Clifford covariant derivation has a natural relation with the Dirac operator

of Cl(TM). If Ei
n
i=1 is a local orthonormal positive oriented basis for TM , then the

Dirac operator D : X∗(M) −→ X∗(M) is defined by

D(U) =
n∑

j=1

ĵEj∇Ej U.

D does not depend on the choice of the local basis, and we can find a better formula

for D. From the properties of Clifford multiplication , we know that

Ej∇Ej U = Ej ∧∇Ej U + iEj (∇Ej U).

Then, we have

D(U) =
n∑

j=i

ĵEj∇Ej U =
n∑

j=1

ĵ(Ej ∧∇Ej U + iEj (∇EjU))

=
n∑

j=1

ĵEj ∧∇Ej U +
n∑

j=1

ĵiEj (∇Ej U) = d̄(U) − δ(U).

This implies that D = d̄ − δ. Writing this equation for fU , we have

D(fU) = d̄(fU) − δ(fU) = d̄f ∧ U + fd̄U − (fδU − U(f))

= d̄f ∧ U + f(d̄U − δU) + id̄f (U)

= fD(U) + (d̄f)U.

Similarly, we obtain

D(U ∧ V ) = d̄(U ∧ V ) − δ(U ∧ V )

= d̄U ∧ V + (−1)kU ∧ d̄V − δU ∧ V − (−1)kU ∧ δV + LUV

= (d̄U − δU) ∧ V + (−1)kU ∧ (d̄V − δV ) + LUV

= (DU) ∧ V + (−1)kU ∧ (DV ) + LUV.

Now, we note that if E ∈ X1(M), then

EU = E ∧ U + iE(U),

UE = U ∧ E + (−1)k+1iE(U).
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So, EU = (−1)kUE + 2iE(U). Therefore we get

D(UV ) =
n∑

j=1

ĵEj∇Ej (UV )

=
n∑

j=1

ĵEj(∇Ej U)V +
n∑

j=1

ĵEjU∇Ej V

= (DU)V +

n∑
j=1

ĵ((−1)kUEj + 2iEj (U))∇Ej V

= (DU)V + (−1)kU(DV ) + 2

n∑
j=1

ĵiEj (U)∇Ej V.

To compute the last term, we assume that U = U1 ∧ · · · ∧ Uk(1 ≤ k), so

n∑
j=1

ĵiEj (U)∇Ej V
n∑

j=1

ĵ
k∑

i=1

(−1)i+1 < Ej , Ui > (U1 ∧ · · · ∧ Ûi ∧ · · · ∧ Uk)∇Ej V

=

k∑
i=1

(−1)i+1(U1 ∧ · · · ∧ Ûi ∧ · · · ∧ Uk)∇∑n
j=1 ĵ<Ej ,Ui>Ej

V

=
k∑

i=1

(−1)i+1(U1 ∧ · · · ∧ Ûi ∧ · · · ∧ Uk)∇UiV

= ∇̂UV.

Due to the linearly with respect to U of both sides of this equality, this relation holds

for all U ∈ Xk(M). Then, we have

D(UV ) = (DU)V + (−1)kU(DV ) + 2∇̂UV.

Therefore, we prove the following

Theorem 6.2. For U ∈ Xk(M) and V ∈ X∗(M) the following relations hold

D(fU) = fD(U) + (d̄f)U,(36)

D(U ∧ V ) = (DU) ∧ V + (−1)kU ∧ (DV ) + LUV,(37)

D(UV ) = (DU)V + (−1)kU(DV ) + 2∇̂UV.(38)

7. Extension to Vector Valued Multivector Fields

To extend the results of the preceding sections to vector valued multivector fields,

consider a vector bundle E −→ M . E-valued k-differential forms on M are sections

of ΛkTM∗ ⊗ E, and E-valued k-multivector fields on M are sections of ΛkTM ⊗ E.

Typical E-valued k-differential forms can be written as ω ⊗ X in which ω ∈ Ak(M)

and X ∈ ΓE, while typical E-valued k-multivector fields can be written as U ⊗ X

in which U ∈ Xk(M) and X ∈ ΓE. The set of all E-valued k-differential forms and

multivector fields are denoted respectively by Ak(M, E) and Xk(M, E) and we set

A(M,E) = ⊕n
k=0A

k(M, E), X∗(M, E) = ⊕n
k=0X

k(M, E).

For three vector bundles E, F, G on M and a linear bundle morphism F⊗E −→ G, can
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extend the exterior and interior product operators between F -valued and E-valued

differential forms and multivector fields as follows

(ω ⊗ X) ∧ (θ ⊗ Y ) = (ω ∧ θ) ⊗ (XY ) ∈ A(M, G),

(U ⊗ X) ∧ (V ⊗ Y ) = (U ∧ V ) ⊗ (XY ) ∈ X∗(M, G),

iU⊗X(θ ⊗ Y ) = iU (θ) ⊗ (XY ) ∈ A(M,G),

iθ⊗X(U ⊗ Y ) = iθU ⊗ (XY ) ∈ X∗(M, G),

for every ω, θ ∈ A(M), U, V ∈ X∗(M) and X ∈ ΓF, Y ∈ ΓE, where we assume

that (XY )p = Xp ⊗ Yp. These operators are well defined and their actions can be

extended to all vector valued differential forms and multivector fields. For example,

if F = M × R, G = E and

(M × R) ⊗ E −→ E,

(p, λ) ⊗ ξ �→ λξ.

then we have the exterior and interior product operators between ordinary differential

forms and multivector fields on M , E-valued differential forms and multivector fields.

Consider a fixed connection ∇ on a vector bundle E. We can define covariant

derivation of sections of E along multivector fields on M as follows. For a blade

k-vector field U = U1 ∧ · · · ∧ Uk(1 ≤ k) and X ∈ ΓE, we define

∇UX =

k∑
j=1

(−1)j+1(U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk) ⊗∇Uj X.

This operator is well defined and it extends to all U ∈ Xk(M), by

∇U : X0(M, E) = ΓE −→ Xk−1(M, E).

To define ∇U as an operator on Xl(M, E), we need a connection on M . If ∇ is another

connection on M , then these connections induce a connection on Λ(TM)⊗E and we

denote all of them by ∇. Note that, for U ∈ X∗(M), X ∈ ΓE and a vector fields V ,

we have

∇V (U ⊗ X) = (∇V U) ⊗ X + U ⊗∇V X.

Now, for U = U1 ∧ · · · ∧ Uk(1 ≤ k), we can define ∇U : Xl(M, E) −→ Xl+k−1(M, E)

as follows. For Y ∈ X∗(M, E), we put

∇UY =

k∑
j=1

(−1)j+1(U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk) ∧ ∇UjY.

This operator is well defined and it can be extended along all U ∈ Xk(M). It can

easily be shown that for each typical E-valued l-vector fields V ⊗ X, we have

∇U (V ⊗ X) = (∇UV ) ⊗ X + (−1)l(k−1)V ∧∇UX.

With direct computation, we have

Theorem 7.1. For U ∈ X(M), V ∈ Xl(M) and Y ∈ X∗(M, E), the following

relations hold
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∇fUY = f∇UY,(39)

∇U (fY) = f∇UY + U(f) ∧ Y,(40)

∇U∧V Y = (−1)kU ∧∇V Y + (−1)l(k−1)V ∧ ∇V Y,(41)

∇U (V ∧ Y) = (∇UV ) ∧ Y + (−1)l(k−1)V ∧∇V Y.(42)

To extend the definition of operator ∇U for all U ∈ X∗(M), we need to define

∇fY.

Simply, define ∇fY = 0, then the definition can be extend linearly ∇U to all U ∈
X∗(M). We can easily check that all relations (39)-(42) also hold for the case k = 0

or l = 0.

Now, we define covariant derivation of E-valued differential forms along multivector

fields. For a blade k-vector field U = U1 ∧ · · · ∧ Uk (k ≥ l), and Φ ∈ A(M, E), we

define

∇UΦ = Σ
k

j=1 (−1)j+1iU1∧···Û···∧···∧Uk
(∇Uj Φ).

This definition is well defined and extends to all U ∈ Xk(M), and

∇U : A1(M, E) −→ A1−k+1(M, E).

Note that the operator ∇U depends on a connection on E and a connection on M .

For a typical F -valued differential form on X we have

∇U (ω ⊗ X) = (∇Uω) ⊗ X + i∇U Xω.

In the case k = 0, this relation leads us to define ∇fΦ = 0. Similarly to the proof of

Theorem 4.2, we can state the following result

Theorem 7.2. For U ∈ Xk(M), V ∈ Xl(M) and Φ ∈ A(M,E), the following rela-

tions hold

∇fUΦ = f∇UΦ,(43)

∇U (fΦ) = f∇UΦ + iU(f)(Φ),(44)

∇U∧V Φ = iV (∇UΦ) + (−1)kliU (∇V Φ),(45)

∇U (iV Φ) = (−1)l(k−1)(i∇U V (Φ) + iV (∇UΦ)).(46)

For each ω ∈ Ak(M), we can also define ∇ω : Xl(M, E) −→ Xk−l+1(M, E) as

follows

(∇ωY)(V1, · · · , Vk−l+1) = iω(∇V1∧···∧Vk−l+1Y)

for Y ∈ Xl(M, E) and every vector fields V1, · · · , Vk−l+1 ∈ X(M). For 1 ≤ l,∇ω

depends on the both connections on E and M , but in the case l = 0, ∇ω : X0(M, E) =

ΓE −→ Xk+1(M, E) depends only on the connection on E. Then for X ∈ ΓE, we

have

(∇ωX)(V1, · · · , Vk−l+1) =

k+1∑
j=1

(−1)j+1ω(V1, · · · , V̂j , · · · , Vk+1)∇Vj X.
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Therefore, if we consider ∇X as an E-valued 1- differential form, then ∇wX =

∇X ∧ w. For a typical E-valued l− vector field U ⊗ X, we have

(47) ∇w(U ⊗ X) = (∇wU) ⊗ X + (−1)l(k−1)∇iU (W )X

To extend the concept of Lie derivation of E− valued multivector fields and differ-

ential forms along multivector fields, we need a connection on E. First, for any vector

field U ∈ X(M), and a typical E-valued multivector field V ⊗X, it is natural to define

the operator L∇
U which is a combination of Lie derivation and covariant derivation as

follows

L∇
U (V ⊗ X) = LUV ⊗ X + V ⊗∇UX.

This operator is well defined and it can be extended to all E-valued multivector fields.

Now, for a blade k− vector field U = U1 ∧ · · · ∧Uk(1 ≤ k) and Y ∈ X∗(M, E), we can

define L∇
U Y as follows

L∇
U Y =

k∑
j=1

(−1)j+1U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk ∧ (L∇
UjY).

This definition is well defined and extends to all U ∈ Xk(M). Then for a typical E−
valued l− vector field V ⊗ X we have

(48) L∇
U (V ⊗ X) = (LUV ) ⊗ X + (−1)l(k−1)V ∧∇UX.

In the case k = 0, the above relation suggests us to define L∇
f (V ⊗ X) = V (f) ⊗ X.

Clearly for U ∈ Xk(M), we have L∇
U : Xl(M, E) −→ Xl+k−1(M, E).

Using the relation (1)-(5),(39)-(42) and (48) we can prove the following results for

typical E-valued multivector fields.

Theorem 7.3. For U ∈ Xk(M), V ∈ Xl(M),Y ∈ X∗(M, E), the following relations

hold.

L∇
U (fY) = fL∇

U Y + U(f) ∧ Y,(49)

L∇
fUY = fL∇

U Y + (−1)kU ∧ idf (Y),(50)

L∇
U (V ∧ Y) = (LUV ) ∧ Y + (−1)l(k−1)V ∧ L∇

U Y,(51)

L∇
U∧V Y = (−1)KU ∧ L∇

V Y + (−1)l(K−1)V ∧ (L∇
U Y).(52)

In the same manner we can define Lie derivation of E-valued differential forms.

First, for any vector field U ∈ X(M), and any typical element ω ⊗ X of A(M, E) we

define

L∇
U (ω ⊗ X) = LUω ⊗ X + ω ⊗∇UX.

This operator is well defined and it can be extended to the Lie derivation of all the

elements of A(M,E). Now, for a blade k− vector field U = U1 ∧ · · · ∧ Uk(1 ≤ k) and

Φ ∈ A(M, E) we define

L∇
U Φ =

k∑
j=1

(−1)j+1iU1∧···∧Ûj∧···∧Uk
(L∇

UjΦ) − iA(U1,··· ,Uk)(Φ).

It is obvious that, the above operator is well defined and we can extend the definition

to all U ∈ Xk(M). For typical elements ω ⊗ X of A(M, E) we have

(53) L∇
U (ω ⊗ X) = (LUω) ⊗ X + i∇U X(ω).
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Using (6), (7) and (53), we can prove for U ∈ Xk(M), Φ ∈ A(M, E), the following

relations

L∇
fUΦ = fL∇

U Φ + (−1)k+1df ∧ iU (Φ),(54)

L∇
U (fΦ) = fL∇

U (Φ) + iU(f)(Φ).(55)

For a connection ∇ on a vector bundle E, its associated exterior derivation

d∇ : Ak(M, E) −→ Ak+1(M, E) was defined in [9], as follows

(d∇Φ)(U1, · · · , Uk+1) =

k+1∑
j=1

(−1)j+1∇Uj Φ(U1, · · · , Ûj , · · ·Uk+1) + iA(U1,··· ,Uk+1)(Φ).

Where Φ ∈ Ak(M, E) and U1, · · · , Uk+1 ∈ X(M). For a typical element ω ⊗ X of

Ak(M, E), a simple computation shows that

(56) d∇(ω ⊗ X) = dω ⊗ X + ∇ωX = dω ⊗ X + (−1)kw ∧∇X.

For a volume element Ω ∈ An(M), the Hodge operators HΩ and H ′
Ω can be extended

to E-valued differential forms and multivector fields as follows

HΩ : Xk(M, E) −→ An−k(M, E) , H ′
Ω : Ak(M, E) −→ Xn−k(M, E)

U ⊗ X �−→ HΩ(U) ⊗ X , ω ⊗ X �−→ H ′
Ω(ω) ⊗ X.

These operators are well defined and by them we can define a divergence operator on

E− valued multivector fields, which depends on ∇ and which is denoted by δ∇.

δ∇ : Xk(M, E) −→ Xk−1(M, E) δ∇ = (−1)n(k+1)+1H ′
Ω ◦ d∇ ◦ HΩ.

By definition, we can see that δ∇ also depends on Ω.

Theorem 7.4. If U ∈ X∗(M) and X ∈ ΓE, then

(57) δ∇(U ⊗ X) = (δU) ⊗ X −∇UX.

Proof. Let U ∈ Xk(M). In the first we prove

∇HΩ(U)X = (−1)k+1HΩ(∇UX).

For an arbitrary W ∈ Xn−k+1(M), we compute < W,∇HΩ(U)X > and < W, HΩ(∇UX) >.

< W,∇HΩ(U)X > = < HΩ(U),∇W X >=< iU (Ω),∇W X >=< Ω, U ∧∇W X >,

< W, HΩ(∇UX) > = < W, i(∇U X)Ω >=< ∇UX ∧ W,Ω > .

From (41) we have

∇U∧W X = (−1)kU∧∇W X+(−1)(n−k+1)(k−1)W∧∇UX = (−1)kU∧∇W X+∇UX∧W.

Since the order of U ∧ W is n + 1, we have that U ∧ W = 0 and ∇UX ∧ W =

(−1)k+1U ∧∇W X which yield the result. Now, we compute δ∇(U ⊗ X).

δ∇(U ⊗ X) = (−1)n(k+1)+1H ′
Ω(d∇(HΩ(U ⊗ X))) = (−1)n(k+1)+1H ′

Ω(d∇(HΩ(U) ⊗ X))

= (−1)n(k+1)+1H ′
Ω(dHΩ(U) ⊗ X + ∇HΩ(U)X)

= (−1)n(k+1)+1H ′
Ω ◦ d ◦ HΩ(U) ⊗ X + (−1)n(k+1)+1H ′

Ω((−1)k+1HΩ(∇UX))

= δU ⊗ X −∇UX. �
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Corollary 7.5. For U ∈ Xk(M) and Y ∈ X∗(M, E) the following relations hold

δ∇(fY) = fδ∇Y − idf (Y),(58)

δ∇(U ∧ Y) = (δU) ∧ Y + (−1)kU ∧ δ∇Y − L∇
U Y.(59)

Proof. It is sufficient to prove the above relations for typical elements of

X∗(M, E). The relations (29), (30) and (57) make the computations easy.

8. Differentiation in Spinor Bundles

Let M be a semi-Riemannian manifold, Cl(TM) its clifford bundle and E −→ M a

spinor bundle on M . Then for a multiplication Cl(TM)⊗E −→ E and a connection

∇ on E, together with Levi-Civita connection of M , this multiplication is parallel. If

{Ei}n
i=1 is an orthonormal local basis for M , then the Dirac operator of this spinor

bundle is defined as follows

D : ΓE −→ ΓE,

D(X) =
∑n

i=1 îEi∇EiX.

This definition does not depend on the choice of the local basis. Now we can define

a covariant derivation of the sections of E along the sections of Cl(T, M), which is

related to the spinor structure of E. We call it Clifford covariant derivation of E

and we denote it by ∇̂. For a blade multivector field U = U1 ∧ · · · ∧ Uk(1 ≤ k) and

X ∈ ΓE we define

∇̂UX =
k∑

j=1

(U1 ∧ · · · ∧ Ûj ∧ · · · ∧ Uk)∇Uj X.

This operator is well defined and it can be extended for all U ∈ Xk(M). For the

case k = 0, we define ∇̂fX = 0, and then we extend the linear operator ∇̂U to all

U ∈ X∗(M) = ΓCl(TM). By the same method mentioned in the proof of Theorem

6.1, we can prove the following.

Theorem 8.1. For U ∈ X∗(M), X ∈ ΓE, U1, · · · , Uk ∈ X(M), the following relations

hold

∇̂fUX = f∇̂UX,(60)

∇̂UfX = f∇̂UX + U(f)X,(61)

∇̂U1···UkX =
k∑

j=1

(−1)j+1U1 · · · Ûj · · ·Uk∇Uj X.(62)

Note that ∇̂ and the Dirac operator are related by same formula as in Theorem

6.2. Then by a simple calculation, as we explore in the proof of theorem 6.2, we have

the following.

Theorem 8.2. For X ∈ ΓE and U ∈ Xk(M) we have

D(fX) = fD(X) + (d̄f)X,(63)

D(UX) = (DU)X + (−1)kU(DX) + 2∇̂UX.(64)
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