Volume 20, Issue 2 (9-2025)                   IJMSI 2025, 20(2): 129-137 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

S. Ibrahim I, Çolak R. On the Sets of Strongly f-Lacunary Summable Sequences. IJMSI 2025; 20 (2) :129-137
URL: http://ijmsi.ir/article-1-1948-en.html
Abstract:  
The statistical convergence with respect to a modulus function has various applications in both mathematics and statistics. The main purpose of this research paper is to establish the relations between the sets of strongly f-lacunary summable and strongly g-lacunary summable sequences, strongly f-lacunary summable and g-lacunary statistically convergent sequences, where f and g are different modulus functions under certain conditions. Furthermore, for some special modulus functions, we establish the relations between the sets of strongly f-lacunary summable and strongly lacunary summable sequences.
Type of Study: Research paper | Subject: Special

References
1. A. Aizpuru, M. C. List'an-Garc'ıa, F. Rambla-Barreno, Density by Moduli and Statistical Convergence, Quaestiones Mathematicae, 37(4), (2014), 525-530. [DOI:10.2989/16073606.2014.981683]
2. M. Altınok, M. K¨u¸c¨ukaslan, A-Statistical Supremum-infimum and A-statistical Convergence, Azerbaijan Journal of Mathematics, 4(2), (2014), 31-42.
3. V. K. Bhardwaj, N. Singh, On Some Sequence Spaces Defined by a Modulus, Indian J. Pure Appl. Math, 30(8), (1999), 809-817.
4. V. K. Bhardwaj, S. Dhawan, Density by Moduli and Lacunary Statistical Convergence, Hindawi, 2016, (2016), 1-11. [DOI:10.1155/2016/9365037]
5. B. T. Bilalov, T. Y. Nazarova, Statistical Convergence of Functional Sequences, Rocky Mountain J. Math, 45(5), (2015), 1413-1423. [DOI:10.1216/RMJ-2015-45-5-1413]
6. B. T. Bilalov, T. Y. Nazarova, On Statistical Convergence in Metric Spaces, Journal of Mathematics Research, 7(1), (2015), 37-43. [DOI:10.5539/jmr.v1n1p37]
7. B. T. Bilalov, T. Y. Nazarova, On Statistical Type Convergence in Uniform Spaces, Bull. Iranian Math. Soc., 42(4), (2016), 975-986.
8. J. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis, 8(1-2), (1988), 47-64. [DOI:10.1524/anly.1988.8.12.47]
9. M. Et, Strongly Almost Summable Difference Sequences of Order m Defined by a Modulus, Studia Scientiarum Mathematicarum Hungarica, 40(4), (2003), 463-476. [DOI:10.1556/sscmath.40.2003.4.6]
10. H. Fast, Sur la Convergence Statistique, Colloquium Mathematicae, 2(3-4), (1951), 241-244. [DOI:10.4064/cm-2-3-4-241-244]
11. J. A Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific Journal of Mathematics, 160(1), (1993), 43-51. [DOI:10.2140/pjm.1993.160.43]
12. J. A. Fridy, On Statistical Convergence, Analysis, 5(4), (1985), 301-314. [DOI:10.1524/anly.1985.5.4.301]
13. D. Ghosh, P. D. Srivastava, On Some Vector Valued Sequence Spaces Defined Using a Modulus Function, Indian J. Pure Appl. Math, 30(8), (1999), 819-826.
14. I. S. Ibrahim, R. C¸ olak, On Strong Lacunary Summability of Order α with Respect to Modulus Functions, Annals of the University of Craiova-Mathematics and Computer Science Series, 1(48), (2021), 127-136. [DOI:10.52846/ami.v48i1.1399]
15. I. J. Maddox, Sequence Spaces Defined by a Modulus, Mathematical Proceedings of the Cambridge Philosophical Society, 100(1), (1986), 161-166. [DOI:10.1017/S0305004100065968]
16. I. J. Maddox, Inclusions Between FK Spaces and Kuttner's Theorem, Mathematical Proceedings of the Cambridge Philosophical Society, 101(3), (1987), 523-527. [DOI:10.1017/S0305004100066883]
17. H. Nakano, Concave Modulars, Journal of the Mathematical Society of Japan, 5(1), (1953), 29-49. [DOI:10.2969/jmsj/00510029]
18. D. Rath, B. C. Tripathy, On Statistically Convergent and Statistically Cauchy Sequences, Indian Journal of Pure and Applied Mathematics, 25, (1994), 381-381.
19. W. H. Ruckle, FK Spaces in which the Sequence of Coordinate Vectors is Bounded, Canadian Journal of Mathematics, 25(5), (1973), 973-978. [DOI:10.4153/CJM-1973-102-9]
20. T. Sal'at, On Statistically Convergent Sequences of Real Numbers, ˇ Mathematica Slovaca, 30(2), (1980), 139-150.
21. I. J. Schoenberg, The Integrability of Certain Functions and Related Summability Methods, The American Mathematical Monthly, 66(5), (1959), 361-775. [DOI:10.1080/00029890.1959.11989303]
22. Zygmund. A, Trigonometric Series, 2nd edn, Cambridge University Press, 1979.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb