1. T. Abdeljawad, On conformable fractional calculus,textit{Journal of Computational and Applied Mathematics}, textbf{279}, (2015), 57--66. [
DOI:10.1016/j.cam.2014.10.016]
2. D. R. Anderson, textit{Taylor's formula and integral inequalities for conformable fractional derivatives}, Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory, Springer,to appear.
3. A. Atangana, D. Baleanu, and A. Alsaedi, New properties of conformable derivative, textit{Open Math.}, textbf{13}, (2015), 889-898. [
DOI:10.1515/math-2015-0081]
4. P. L. v{C}ebyv{s}ev, Sur less expressions approximatives des integrales definies par les autres prises entre les memes limites,textit{Proc. Math. Soc. Charkov }, textbf{2}, (1882), 93-98.
5. R. Gorenflo, F. Mainardi, textit{Fractional calculus:integral and differential equations of fractional order}, Springer Verlag,Wien, 223-276, 1997. [
DOI:10.1007/978-3-7091-2664-6_5]
6. G. Gruss, {U}ber das maximum des absoluten Betrages textit{ }$frac{1}{b-a}int limits_{a}^{b}f(x)g(x)dx-frac{1}{(b-a)^{2}}int limits_{a}^{b}f(x)dxint limits_{a}^{b}g(x)dx$, textit{Math. Z.}, textbf{39}, (1935), 215-226. [
DOI:10.1007/BF01201355]
7. Abu Hammad, R. Khalil, Abel s formula and wronskian for conformable fractional differential equations, textit{International Journal of Differential Equations and Applications}, textbf{13}(3), (2014), 177-183.
8. O. S. Iyiola and E. R.Nwaeze, Some new results on the new conformable fractional calculus with application using D Alambert approach, textit{Progr. Fract. Differ. Appl.}, textbf{2}(2), (2016), 115-122. [
DOI:10.18576/pfda/020204]
9. U. Katugampola, A new fractional derivative with classical properties, ArXiv:1410.6535v2.
10. R. Khalil, M. Al horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, textit{Journal of Computational Applied Mathematics}, textbf{264}, (2014), 65-70. [
DOI:10.1016/j.cam.2014.01.002]
11. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, textit{Theory and Applications of Fractional Differential Equations}, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
12. S. Miller and B. Ross, textit{An introduction to the Fractional Calculus and Fractional Differential Equations}, John Wiley Sons, USA, 1993.
13. D. S. Mitrinvi'{c}, J. E. Pecari'{c} and A. M. Fink, textit{Classical and New Inequalities in Analysis}, Kluwer Academic Publishers, Dordrecht, 1993. [
DOI:10.1007/978-94-017-1043-5]
14. D. S. Mitrinovi{c}, J. E. Pecari{c} and A. M. Fink, textit{Inequalities involving functions and their integrals and derivatives}, Springer Science & Business Media, 2012.
15. A. M. Ostrowski, textit{{U}ber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert}, textit{Comment. Math.Helv.}, textbf{10}, (1938), 226-227. [
DOI:10.1007/BF01214290]
16. B.G. Pachpatte, textit{Analytic Inequalities}. Atlantis Press, Paris, 2012. [
DOI:10.2991/978-94-91216-44-2]
17. I. Podlubni, textit{Fractional Differential Equations},Academic Press, San Diego, 1999.
18. M. Z. Sarikaya, On the Ostrowski type integral inequality, textit{Acta Math. Univ. Comenianae}, textbf{LXXIX}(1), (2010), 129-134.
19. M. Z. Sarikaya and H. Budak, New inequalities of Opial type for conformable fractional integrals, textit{Turk. J. Math}, textbf{41}(5), (2017), 1164 - 1173. [
DOI:10.3906/mat-1606-91]