1. A.M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Higher education, Springer, 2011. [
DOI:10.1007/978-3-642-21449-3]
2. A.M. Wazwaz, A reliable treatment for mixed volterra-fredholm integral equations, Appl. Math. Comput. 127 (2002) 405-414. [
DOI:10.1016/S0096-3003(01)00020-0]
3. K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37 (1999) 18. [
DOI:10.1016/S0898-1221(99)00107-8]
4. F. Calio, M.V. Fernandez Munoz, E. Marchetti, Direct and iterative methods for the numerical solution of mixed integral equations, Appl. Math. Comput. 216 (2010) 3739-3746. [
DOI:10.1016/j.amc.2010.05.032]
5. X. Tang, Numerical solution of Volterra-Fredholm integral equations using parameterized pseudospectral integration matrices, Appl. Math. Comput. 270 (2015) 744-755. [
DOI:10.1016/j.amc.2015.08.076]
6. J.P. Kauthen, Continuous time collocation methods for volterra-fredholm integral equations, Numer. Math. 56 (1989) 409-424. [
DOI:10.1007/BF01396646]
7. E. Yusufoglu, E. Erbas, Numerical expansion methods for solving fredholm-volterra type linear integral equations by interpolation and quadrature rules, Kybernetes 37 (6)(2008) 768-785. [
DOI:10.1108/03684920810876972]
8. M.A. Abdou, F.A. Salama, Volterra-fredholm integral equation of the first kind and spectral relationships, J. Appl. Math. Comput. 153 (2004) 141-153. [
DOI:10.1016/S0096-3003(03)00619-2]
9. S. Tomasiello, A note on three numerical procedures to solve Volterra integro-differential equations in structural analysis, Comput. Math. Appl., textbf62, (2011), 3183-3193. [
DOI:10.1016/j.camwa.2011.08.031]
10. S. Tomasiello, Some remarks on a new DQ-based method for solving a class of Volterra integro-differential equations, Appl. Math. Comput., 219, (2012), 399-407. [
DOI:10.1016/j.amc.2012.06.031]
11. H. Brunner, On the numerical solution of Volterra-Fredholm integral equation by collocation methods, SIAMJ. Numer. Anal. 27 (4)(1990) 87-96. [
DOI:10.1137/0727057]
12. S. Yalcinbas, Taylor polynomial solution of nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput. 127 (2002) 195-206. [
DOI:10.1016/S0096-3003(00)00165-X]
13. M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Numerical solutions of the nonlinear Volterra- Fredholm integral equations by using homotopy perturbatio nmethod, Appl. Math. Comput. 188 (2007) 446-449. [
DOI:10.1016/j.amc.2006.10.015]
14. [12] K. Maleknejad, H. Almasieh, M. Roodaki, Triangular functions (TFs) method for the solution of nonlinear Volterra-Fredholm integral equations, Commun. Nolin. Sci. Numer. Simula. 15 (2010) 3293-3298. [
DOI:10.1016/j.cnsns.2009.12.015]
15. [13] Y. Ordokhani, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized haar functions, Appl. Math. Comput. 180 (2006) 436-443. [
DOI:10.1016/j.amc.2005.12.034]
16. [14] Y. Ordokhani, M. Razzaghi, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized haar functions, Appl. Math. Lett. 21 (2008) 4-9. [
DOI:10.1016/j.aml.2007.02.007]
17. [15] F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput. 280 (2016) 110-123. [
DOI:10.1016/j.amc.2016.01.038]
18. [16] S. Yousefi, M. Razzaghi, Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations, Math. Comput. Simula. 70 (2005) 419-428. [
DOI:10.1016/j.matcom.2005.02.035]
19. [17] F. Mirzaee, A.A. Hoseini, Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series, Alex. Engi. J. 52 (2013) 551-555. [
DOI:10.1016/j.aej.2013.02.004]
20. [18] M. Paripour, M. Kamyar, Numerical solution of nonlinear Volterra-Fredholm integral equations by using new basis functions, Commun. Numer. Anal. 2013 (2013) 1-11. [
DOI:10.5899/2013/cna-00170]
21. [19] K. Krishnaveni, K. Kannan, S. Raja Balachandar, A new polynomial method for solving Volterra-Fredholm integral equations, Inter. J. Engi. Tech. 5 (2013) 1474-1483.
22. [20] K. Wang, Q. Wang, Lagrange collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput. 219 (2013) 10434-10440. [
DOI:10.1016/j.amc.2013.04.017]
23. [21] K. Wang, Q. Wang, Taylor collocation method and convergence analysis for the Volterra- Fredholm integral equations, J. Comput. Appl. Math. 216 (2014) 294-300. [
DOI:10.1016/j.cam.2013.09.050]
24. [22] H. Laeli Dastjerdi, F.M. Maalek Ghaini, Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials,Appl. Math. Model. 36 (2012) 3283-3288. [
DOI:10.1016/j.apm.2011.10.005]
25. A. Khastan, A new representation for inverse fuzzy transform and its application, Soft. Comput., 21(13), (2017) 3503-3512. [
DOI:10.1007/s00500-017-2555-1]
26. [23] X.-F. Li, Approximate solution of linear ordinary differential equations with variable coefficients, Math. Comput. Simulat. 75 (2007) 113-125. [
DOI:10.1016/j.matcom.2006.09.006]
27. [24] X.-F. Li, L. Huang, Y. Huang, A new Abel inversion by means of the integrals of an input function with noise, J. Phys. A: Math. Theor. 40 (2007) 347-360. [
DOI:10.1088/1751-8113/40/2/012]
28. [25] L. Huang, X.-F. Li, Y. Huang, Approximate solution of Abel integral equation, Comput. Math. Appl. 56 (2008) 1748-1757. [
DOI:10.1016/j.camwa.2008.04.003]
29. [26] B.-Q. Tang, X.-F. Li, A new method for determining the solution of Riccati differential equations, Appl. Math. Comput. 194 (2007) 431-440. [
DOI:10.1016/j.amc.2007.04.061]
30. [27] B.-Q. Tang, X.-F. Li, Approximate solution to an integral equation with fixed singularity for a cruciform crack, Appl. Math. Lett. 21 (2008) 1238-1244. [
DOI:10.1016/j.aml.2007.12.022]
31. [28] Y. Huang and X.-F. Li, Approximate solution of a class of linear integro-differential equations by Taylor expansion method, Int. J. Comp. Math. 87 (6) (2010) 1277-1288. [
DOI:10.1080/00207160802275969]
32. [29] L. Huang, X.-F. Li, Y. Zhao, X.-Y. Duan, Approximate solution of fractional integrodifferential equations by Taylor expansion method, Comput. Math. Appl. 62 (2011) 1127-1134. [
DOI:10.1016/j.camwa.2011.03.037]
33. [30] A.R. Vahidi and M. Didgar, An improved method for determining the solution of Riccati equations, Neural. Comput. Appl. 23 (2013) 1229-1237. [
DOI:10.1007/s00521-012-1064-5]
34. [31] M. Didgar and N. Ahmadi, An efficient method for solving systems of linear ordinary and fractional differential equations, B. Malays. Math. Sci. SO. 38 (4) (2015) 1723-1740. [
DOI:10.1007/s40840-014-0060-6]
35. [32] K. Maleknejad, T. Damercheli, Improving the accuracy of solutions of the linear second kind volterra integral equations system by using the Taylor expansion method, Indian J. Pure Appl. Math. 45 (3) (2014) 363-376. [
DOI:10.1007/s13226-014-0068-5]
36. [33] E. Babolian, M. Mordad, A numerical method for solving systems of linear and nonlinear integral equations of the second-kind by hat basis functions, Comput. Math. Appl. 62 (2011) 187-198. [
DOI:10.1016/j.camwa.2011.04.066]
37. [34] F. Cali'o, A.I. Garralda-Guillem, E. Marchetti, M. Ruiz Gal'an, Numerical approaches for systems of Volterra-Fredholm integral equations, Appl. Math. Comput. 225 (2013) 811-821. [
DOI:10.1016/j.amc.2013.10.006]