Volume 20, Issue 2 (9-2025)                   IJMSI 2025, 20(2): 123-128 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi A, Ebrahimi M. Zero Divisors of Support Size 3 in Complex Group Algebras of Finite Groups. IJMSI 2025; 20 (2) :123-128
URL: http://ijmsi.ir/article-1-2048-en.html
Abstract:  
It is proved that if 1 + x + y or 1 + x - y cannot occur as a zero divisor of the complex group algebra of a finite group G for any two distinct x, y ∈ G {1}, then G is solvable. We also characterize all finite abelian groups with the latter property. The motivation of studying such property for finite groups is to settle the existence of zero divisors with support size 3 in the integral group algebra of torsion free residually finite groups.
Type of Study: Research paper | Subject: General

References
1. A. Abdollahi, Does Kaplansky's Zero Divisor Conjecture Hold Valid for (Torsion-free) Residually Finite Groups? Mathoverflow.
2. A. Abdollahi, Z. Taheri, Zero Divisors of Support Size 3 in Group Algebras and Trinomials Divided by Irreducible Polynomials Over GF (2), Rendiconti del Seminario Matematico della Universit'a di Padova, 145, (2021), 191-203. [DOI:10.4171/rsmup/78]
3. A. Abdollahi, Z. Taheri, Zero Divisors and Units with Small Supports in Group Algebras of Torsion-free Groups, Comm. Algebra, 46(2), (2018), 887-925. [DOI:10.1080/00927872.2017.1344688]
4. M. Aschbacher, S3-Free 2-fusion Systems, Proc. Edinburgh Math. Soc., 56, (2013), 27-48. [DOI:10.1017/S0013091512000235]
5. B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982. [DOI:10.1007/978-3-642-67997-1]
6. M. Aschenbrenner, S. Friedl, H. Wilton, 3-Manifold Groups, EMS Series of Lectures in Mathematics, 2015. [DOI:10.4171/154]
7. I. Kaplansky, Problems in the Theory of Rings (Revisited), Amer. Math. Monthly, 77, (1970), 445-454. [DOI:10.1080/00029890.1970.11992519]
8. P. Schweitzer, On Zero Divisors with Small Support in Group Rings of Torsion-free Groups, J. Group Theory, 16(5), (2013), 667-693. [DOI:10.1515/jgt-2013-0017]
9. Unsolved Problems in Group Theory. The Kourovka Notebook, Edited by E. I. Khukhro, V. D. Mazurov, No. 19, Russian Academy of Sciences, Siberian Branch, 2018.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb