Volume 15, Issue 2 (10-2020)                   IJMSI 2020, 15(2): 21-30 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nabavi Sales S M S. On the Hyponormal Property of Operators. IJMSI. 2020; 15 (2) :21-30
URL: http://ijmsi.ir/article-1-1088-en.html
Abstract:  

Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge transform, $tilde{T}_{f}$. Given two continuous functions $f$ and $g$ with the property  $f(t)g(t)=t$, we also introduce the $(f,g)$-Aluthge transform, $tilde{T}_{(f,g)}$. The features of these transforms are discussed as well.

Type of Study: Research paper | Subject: General

References
1. A. Aluthge, textit{On p-hyponormal operators for $0 < p < 1$}, Integral Equations Operator Theory textbf{13} (1990), 307--315. [DOI:10.1007/BF01199886]
2. T. Ando, textit{Aluthge transforms and the convex hull of the eigenvalues of a matrix}, Linear and Multilinear Algebra textbf{52} (2004), 281--292. [DOI:10.1080/03081080310001653092]
3. A. Antezana, P. Massey and D. Stojanoff, textit{$lambda$-Aluthge transforms and Shatten ideals}, Linear Algebra Appl.textbf{405} (2005), 177--199. [DOI:10.1016/j.laa.2005.03.016]
4. T. Furuta, textit{Invitation to Linear Operators; From Matrices to Bounded Linear Operators on a Hilbert Space }, Taylor and Francis, London, 2001. [DOI:10.1201/b16820]
5. F. Botelho, L. Moln'ar and G. Nagy, textit{ Linear bijections on von Neumann factors commuting with $lambda$-Aluthge transform}, Bull. London Math. Soc.(2016), 48 (1): 74--84. Linear bijections on von Neumann factors commuting with $lambda$-Aluthge transform Bull. London Math. Soc [DOI:10.1112/blms/bdv092]
6. M. Ito, T. Yamazaki, and M. Yanagida, textit{On the polar decomposition of the Aluthge transformation and related results}, J. Operator Theory textbf{51} (2004), 303--319.
7. I. B. Jung, E. Ko and C. Pearcy, textit{Aluthge transforms of operators}, Integral Equations Operator Theory textbf{37} (2000), 437--448. [DOI:10.1007/BF01192831]
8. M.S. Moslehian and S.M.S. Nabavi Sales, textit{Some conditions implying normality of operators}, C. R. Acad. Sci. Paris, Ser. I, textbf{349} (2011), 251--254. [DOI:10.1016/j.crma.2011.01.018]
9. M.S. Moslehian and S.M.S. Nabavi Sales, textit{Fuglede--Putnam type theorem via the Aluthge transform}, Positivitytextbf{349} (2013), 151--162. [DOI:10.1007/s11117-011-0154-4]
10. S.M.S. Nabavi Sales, textit{A note on $lambda$-Aluthge transforms of operators}, Wavelets and Linear Algebratextbf{3} (2016), 53--60.
11. A. Oloomi and M. Rajabalipour, textit{Operators with normal Aluthge transforms}, C. R. Acad. Sci. Paris, Ser. I, textbf{350} (2012), 263--266. [DOI:10.1016/j.crma.2012.02.003]
12. K. Tanahashi, textit{On log-hyponormal operators}, Integral Equations Operator Theory textbf{34} (1999), 364--372. [DOI:10.1007/BF01300584]
13. A. Uchiyama and K. Tanahashi, textit{Fuglede--Putnam theorem for p-hyponorma or log-hyponormal operators}, Glasgow Math. J., textbf{44} (2002), 397--410. [DOI:10.1017/S0017089502030057]
14. D. Xia, textit{Spectral Theory of Hyponormal Operators}, Birkh"{a}user Verlag, Boston, 1983. [DOI:10.1007/978-3-0348-5435-1]
15. T. Yamazaki, textit{An expression of spectral radius via Aluthge transformation}, Proc. Amer. Math. Soc., textbf{130} (2002), 1131--1137. [DOI:10.1090/S0002-9939-01-06283-9]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2020 All Rights Reserved | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb