In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |