1. I. Ahmad, S. Sharma, Suffciency in Multiobjective Subset Srogramming Involving Generalized Type-I Functions, Journal of Global Optimization, 39, (2007), 473-481. [
DOI:10.1007/s10898-007-9150-4]
2. M. Avriel, r-Convex Functions, Mathematical Programming, 2, (1972), 309-323. [
DOI:10.1007/BF01584551]
3. A. Bătătorescu, Optimality Conditions Involving V -Type-I Univexity and Set-Functions, Mathematical Reports, 7, (2005) 1-11.
4. C. R. Bector, M. Singh, Duality for Multiobjective B-vex Programming Involving n-Set Functions, Journal of Mathematical Analysis and Applications, 202, (1996), 701-726. [
DOI:10.1006/jmaa.1996.0343]
5. D. Begis, R. Glowinski, Applications de la Méthode des éléments Finis à L'approximation d'un Problème de Domaine Optimal, Mèthodes de Rèsolution de Problèmes Approchès, Applied Mathematics and Optimization, 2, (1975), 130-169. [
DOI:10.1007/BF01447854]
6. M. Beldiman, A. Paraschiv, O. Cojocaru, On Multiobjective Programming Problems Containing n-Set Functions, Analele Universităţii Bucuresti, Matematică Anul, LVII, (2008), 189-206.
7. D. Bhatia, A. Mehra, Lagrange Duality in Multiobjective Fractional Programming Problems with n-Set Functions, Journal of Mathematical Analysis and Applications, 236, (1999), 300-311. [
DOI:10.1006/jmaa.1999.6425]
8. J. Cea, A. Gioan, J. Michel, Quelque Résultats sur i'Identification de Domaines, Calcolo, 10, (1973), 133-145. [
DOI:10.1007/BF02575843]
9. H. W. Corley, S. D. Roberts, A Partitioning Problem with Applications in Regional Design, Operations Research, 20, (1982), 1010-1019. [
DOI:10.1287/opre.20.5.1010]
10. H. W. Corley, Optimization Theory for n-set Functions, Journal of Mathematical Analysis and Applications, 127, (1987), 193-205. [
DOI:10.1016/0022-247X(87)90151-X]
11. G. Dantzing, A. Wald, On the Fundamental Lemma of Neyman and Pearson, The Annals of Mathematical Statistics, 22, (1951), 87-93. [
DOI:10.1214/aoms/1177729695]
12. A. Jayswal, I. M. Stancu-Minasian, Multiobjective Subset Programming Problems Involving Generalized D-Type I Univex Functions, Proceedings of the Romanian Academy, Series A, 11, (2010) 19-24.
13. C. L. Jo, D. S. Kim, G. M. Lee, Duality for Multiobjective Programming Involving n-Set Functions, Optimization, 29, (1994), 45-54. [
DOI:10.1080/02331939408843935]
14. R. Larsson, Methodology for Topology and Shape Optimization: Application to a RearLower Control Arm, Chalmers University of Technology Göteborg, Sweden, 2016.
15. L. J. Lin, Optimality of Differentiable Vector-Valued n-set Functions, Journal of Mathematical Analysis and Applications, 149, (1990), 255-270. [
DOI:10.1016/0022-247X(90)90299-U]
16. L. J. Lin, On the Optimality Conditions of Vector-Valued n-set Functions, Journal of Mathematical Analysis and Applications, 161, (1991), 367-387. [
DOI:10.1016/0022-247X(91)90337-Y]
17. S. K. Mishra, S. Y. Wang, K. K. Lai, J. Shi, New Generalized Invexity for Duality in Multiobjective Programming Problems Involving n-set, in: A. Eberhard, N. Hadjisavvas, D. T. Luc (eds.), Generalized Convexity, Generalized Monotonicity and Applications, Nonconvex Optimization and Applications, 77, Springer, New York, 2005, pp. 321-339. [
DOI:10.1007/0-387-23639-2_19]
18. B. Mond, T. Weir, Generalized Concavity and Duality, in: S. Schaible, W.T. Ziemba (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, pp. 263-279.
19. R. J. T. Morris, Optimal Constrained Selection of a Measurable Subset, Journal of Mathematical Analysis and Applications, 70, (1979), 546-562. [
DOI:10.1016/0022-247X(79)90064-7]
20. V. Preda, Some Optimality Conditions for Multiobjective Programming Problems with Set Functions, Revue Roumaine de Mathmatiques Pures et Appliques, 39, (1994), 233-247.
21. V. Preda, On Duality of Multiobjective Fractional Measurable Subsets Selection Problems, Journal of Mathematical Analysis and Applications, 196, (1995), 514-525. [
DOI:10.1006/jmaa.1995.1423]
22. V. Preda, Duality for Multiobjective Fractional Programming Problems Involving n-Set Functions. In: C. A. Cazacu, C. W. E. Lehto, T. M. Rassias (eds.), Analysis and Topology, World Scientific Publishing Co., River Edge, NJ, 1998, pp. 569-583. [
DOI:10.1142/9789812817297_0033]
23. V. Preda, A. Bătătorescu, On Duality for Minmax Generalized B-vex Programming Involving n-Set Functions. Journal of Convex Analysis, 9, ( 2002), 609-623.
24. V. Preda, I. M. Stancu-Minasian, Optimality and Wolfe Duality for Multiobjective Programming Problems Involving n-Set Functions, In: N. Hadjisavvas, J. E. Martínez-Legaz, J.-P. Penot (eds.), Generalized Convexity and/or Generalized Monotonicity, Lecture Notes in Economics and Mathematical Systems, 502, Springer-Verlag, Berlin, 2001, pp. 349-361. [
DOI:10.1007/978-3-642-56645-5_25]
25. V. Preda, I. M. Stancu-Minasian, M. Beldiman, A. M. Stancu, Generalized V -Univexity Type-I for Multiobjective Programming with n-Set Functions, Journal of Global Optimization, 44, (2009), 131-148. [
DOI:10.1007/s10898-008-9315-9]
26. V. Preda, I. M. Stancu-Minasian, E. Koller, On Optimality and Duality for Multiobjective Programming Problems Involving Generalized d-Type-I and Related n-Set Functions, Journal of Mathematical Analysis and Applications, 283, (2003), 114-128. [
DOI:10.1016/S0022-247X(03)00242-7]
27. A. M. Stancu, Optimality and Duality for Multiobjective Fractional Programming Problems with n-Set Functions and Generalized V-Type-I Univexity, Revue Roumaine de Mathmatiques Pures et Appliques, 57, (2012), 401-421.
28. I. M. Stancu-Minasian, V. Preda, Optimality Conditions and Duality for Programming Problems Involving Set and n-Set Functions - a Survey, Journal of Statistics and Management Systems, 5, (2002), 175-207. [
DOI:10.1080/09720510.2002.10701056]
29. A. A. Taflanidis, Robust Stochastic Design of Viscous Dampers for Base Isolation Applications, in: M. Papadrakakis, M. Fragiadakis, N. D. Lagaros (eds.), Computational Methods in Earthquake Engineering, Computational Methods in Applied Sciences, 21, Springer 2011, pp. 305-329. [
DOI:10.1007/978-94-007-0053-6_14]
30. G. J. Zalmai, Suffciency Criteria and Duality for Nonlinear Programs Involving n-Set Functions, Journal of Mathematical Analysis and Applications, 149, (1990), 322-338. [
DOI:10.1016/0022-247X(90)90045-H]
31. G. J. Zalmai, Optimality Conditions and Duality for Multiobjective Measurable Subset Selection Problems, Optimization, 22, (1991), 221-238. [
DOI:10.1080/02331939108843661]