1. H.I. Freedman, P. Waltman,, Persistence in models of three interacting predator prey populations, Math. Biosci., 68, (1984), 213-231. [
DOI:10.1016/0025-5564(84)90032-4]
2. Y. Xiao, L. Chen, Modelling and analysis of predator- prey with disease in the prey,Mathematical Biosciences, 171(1), (2001), 59-82. [
DOI:10.1016/S0025-5564(01)00049-9]
3. B. Dubey, R.K. Upadhyay, Persistence and Extinction of One-Prey and Two-Predators System, Nonlinear Analysis: Modelling and Control, 9(4),307-329. (2004). [
DOI:10.15388/NA.2004.9.4.15147]
4. K.P. Das, A Mathematical Study of a predator-prey Dynamics with Disease in Predator, International Scholarly Research Network ISRN Applied Mathematics, (2011), 669-684. [
DOI:10.5402/2011/807486]
5. S. Sharma, G. P. Samanta, A ratio-dependent predator-prey model with Allee eect and disease in prey, J. Appl. Math. Comput., 47, (2015), 345-364. [
DOI:10.1007/s12190-014-0779-0]
6. R. K. Naji and R. M. Hussien, The Dynamics of Epidemic Model with Two Types of Infectious Diseases and Vertical Transmission, Journal of applied mathematics, 2016, (2016). [
DOI:10.1155/2016/4907964]
7. A. J. Lotka, Elements of physical biology, Williams & Wilkins, Princeton, N. J., 1925.
8. V. Volterra, Variazioni e uttuazioni del numero dindividui in specie conviventi, Mem.Accad. Lincei Roma, 2,(1926), 31-113.
9. W. Wang, L. Chen, A predator-prey system with stage-structure for predator, Computers Math., Applic., 33(8), 83-91, (1997). [
DOI:10.1016/S0898-1221(97)00056-4]
10. J. A. Cui, Y. Takeuchi, A predator-prey system with a stage structure for the prey, Mathematical and Computer Modelling, 11, (2006), 26-1132.
11. X. Song, L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Mathematical Biosciences, 170, (2001), 173-186. [
DOI:10.1016/S0025-5564(00)00068-7]
12. T.K. Kar, U.K. Pahari, Modelling and analysis of a prey-predator system with stage structure and harvesting, Nonlinear Analysis: Real World Applications, 8, (2007), 601609. [
DOI:10.1016/j.nonrwa.2006.01.004]
13. R. Shi and L. Chen, The study of a ratio-dependent predator-prey model with stage structure in the prey, Nonlinear Dyn, 58, (2009), 443-451. [
DOI:10.1007/s11071-009-9491-2]
14. S. Xu., Dynamics of a general prey-predator model with prey-stage structure and diusive effects, Computers & Mathematics with Applications, 68(3),(2014), 405-423. [
DOI:10.1016/j.camwa.2014.06.016]
15. P. Hao, J. Wei and D. Fan, Analysis of dynamics in an eco-epidemiological model with stage structure, Advances in Difference Equations 2016(1),(2016). [
DOI:10.1186/s13662-016-0956-6]
16. Raid K. Naji and Salam J. Majeed, The Dynamical Analysis of a Prey-Predator Model with a Refuge-Stage Structure Prey Population, International Journal of Differential Equations, 2016, (2016). [
DOI:10.1155/2016/2010464]
17. W.G. Aiello and H. I. Freedman,A time-delay model of single-species growth with stage structure, Mathematical Biosciences, 101, (1990), 139-153. [
DOI:10.1016/0025-5564(90)90019-U]
18. Y. Kuang, Delay differential equations with applications in population dynamics, Boston: Academic Press , 1993.
19. K. Ye, X. Song, Predator-prey system with stage structure and delay, Appl. Math. J. Chinese Univ. Ser. B, 18(2), (2003), 143-150. [
DOI:10.1007/s11766-003-0018-1]
20. M. Bandyopadhyaya and S. Banerjee,A stage-structured prey-predator model with discrete time delay, Applied Mathematics and Computation, 182,1385-1398.(2006). [
DOI:10.1016/j.amc.2006.05.025]
21. Y. Chen and S. Changming, Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay, Chaos, Solitons and Fractals, 38,1104-1114.(2008). [
DOI:10.1016/j.chaos.2007.01.035]
22. L. Wang, R. Xu, G. Feng, A stage-structured prey-predator system with time delay, J. Appl. Math. Comput., 33, (2010), 267-281. [
DOI:10.1007/s12190-009-0286-x]
23. H. L. Smith, An introduction to delay di erential equations with applications to the life sciences, Texts in Applied Mathematics. New York: Springer, 2011. [
DOI:10.1007/978-1-4419-7646-8_1]
24. X. K. Sun, H. F, Huo and X. B. Zhang, A Predator-Prey Model with Functional Response and Stage Structure for Prey, Abstract and Applied Analysis, 2012, (2012). [
DOI:10.1155/2012/628103]
25. Q. Gao and Z. Jin, A Time Delay Predator-Prey System with Three-Stage-Structure, The Scienti c World Journal,2014, (2014). [
DOI:10.1155/2014/512838]
26. J.F.M. Al-Omari, A stage-structured predator-prey model with distributed maturation delay and harvesting, journal of biological dynamics, 9(1),278-287.(2015). [
DOI:10.1080/17513758.2015.1088080]
27. B. Hassard, N. Kazarino and Y. H. Wan, Theory and applications of Hopf bifurcation. London mathematical society lecture note series, Cambridge University Press, 41.(1981).