Volume 11, Issue 1 (4-2016)                   IJMSI 2016, 11(1): 137-143 | Back to browse issues page

XML Print


Abstract:  

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n$.

Type of Study: Research paper | Subject: Special