In this paper we investigate the stability of one-sided perturbation to g-frame expansions. We show that if $Lambda$ is a g-frame of a Hilbert space $mathcal{H}$, $Lambda_{i}^{a}=Lambda_{i}+Theta_{i}$ where $Theta_{i} in mathcal{L}(mathcal{H},mathcal{H}_{i})$, and $widetilde{f}=sum_{i in J}Lambda_{i}^{star}widetilde{Lambda}_{i}^{a}f$, $widehat{f}=sum_{i in J}(Lambda_{i}^{a})^{star}widetilde{Lambda_{i}}f$, then $|widehat{f}-f|leq alpha |f|$ and $|f-widetilde{f}|leq beta |f|$ for some $alpha$ and $beta$.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |