In this paper we present a new method to find simple or multiple roots of functions in a finite interval. In this method using bisection method we can find an interval such that this function is one to one on it, thus we can transform problem of finding roots in this interval into an ordinary differential equation with boundary conditions. By solving this equation using collocation method we can find a root for given function in the special interval. We also present convergence analysis of the new method. Finally some examples are given to show efficiency of the presented method.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |