Volume 20, Issue 1 (4-2025)                   IJMSI 2025, 20(1): 111-123 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Viriyapong N, Boonpok C. $zeta_varsigma$-$R_0$ and $zeta_varsigma$-$R_1$ Strong Generalized Topological Spaces. IJMSI 2025; 20 (1) :111-123
URL: http://ijmsi.ir/article-1-1851-en.html
Abstract:  
The purpose of the present paper is to introduce the concepts of ζς-R0 and ζς-R1 strong generalized topological spaces are defined by utilizing the notions of (ζ, ς)-open sets and (ζ, ς)-closure operators. Moreover, several characterizations of ζς-R0 and ζς-R1 strong generalized topological spaces are investigated.
Type of Study: Research paper | Subject: General

References
1. F. G. Arenas, J. Dontchev, M. Ganster, On λ-sets and Daul of Generalized Continuity, Questions and Answers in General Topology, 15, (1997), 3-13.
2. M. Caldas, D. N. Georgiou, T. Niori, On (Λ, θ)-closed Sets, Questions and Answers in General Topology, 23, (2005), 69-87.
3. M. Caldas, S. Jafari, T. Noiri, Characterizations of Λθ-R0 and Λθ-R1 Topological Spaces, Acta Mathematica Hungarica, 103, (2004), 85-95. [DOI:10.1023/B:AMHU.0000028238.17482.54]
4. Á. Császár, Generalized Open Sets, Acta Mathematica Hungarica, 75, (1997), 65-87. [DOI:10.1023/A:1006582718102]
5. Á. Császár, Generalized Topology, Generalized Continuity, Acta Mathematica Hungarica, 96, (2002), 351-357. [DOI:10.1023/A:1019713018007]
6. Á. Császár, Extremally Disconnected Generalized Topologies, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica, 47, (2004), 91-96.
7. Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Mathematica Hungarica, 106, (2005), 53-66. [DOI:10.1007/s10474-005-0005-5]
8. Á. Császár, Modification of Generalized Topologies via Hereditary Classes, Acta Mathematica Hungarica, 115, (2007), 29-36. [DOI:10.1007/s10474-006-0531-9]
9. A. S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, Journal of the American Mathematical Society, 68, (1961), 886-893. [DOI:10.1080/00029890.1961.11989785]
10. C. Dorsett, Semi-T2, Semi-R1 and Semi-R0 Topological Spaces, Annales de la Société Scientifique de Bruxelles, 92, (1978), 143-150.
11. K. K. Dube, A Note on R0 Topological Spaces, Matematički Vesnik, 11, (1974), 203-208.
12. K. K. Dube, A Note on R1 Topological Spaces, Periodica Mathematica Hungarica, 13, (1982), 267-271. [DOI:10.1007/BF01849239]
13. E. Ekici, B. Roy, New Generalized Topologies on Generalized Topological Spaces Due to Császár, Acta Mathematica Hungarica, 132(1-2), (2011), 117-124. [DOI:10.1007/s10474-010-0050-6]
14. E. Ekici, Generalized Submaximal Spaces, Acta Mathematica Hungarica, 134(1-2), (2012), 132-138. [DOI:10.1007/s10474-011-0109-z]
15. S. N. Maheshwari, R. Prasad, On (R0)s-spaces, Portugaliae Mathematica, 34, (1975), 213-217.
16. H. Maki, Generalized Λ-sets and the Associated Closure Operator, Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986), 139-146.
17. M. G. Murdeshwar, S. A. Naimpally, R1-topological Spaces, Canadian Mathematical Bulletin, 9, (1966), 521-523. [DOI:10.4153/CMB-1966-065-4]
18. S. A. Naimpally, On R0-topological Spaces, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica, 10, (1967), 53-54.
19. B. Roy, E. Ekici, On (∧, µ)-closed Sets in Generalized Topological Spaces, Methods of Functional Analysis and Topology, 17(2), (2011), 174-179.
20. N. A. Shanin, On Separation in Topological Spaces, Doklady Akademii Nauk SSSR, 38, (1943), 110-113.
21. N. V. Veličko, H-closed Topological Spaces, American Mathematical Society Translations: Series 2, 78, (1968), 102-118. [DOI:10.1090/trans2/078/05]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb