Volume 20, Issue 1 (4-2025)                   IJMSI 2025, 20(1): 79-100 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdul Rahman N A, Ahmad M Z. Fuzzy Sumudu Transform for System of Fuzzy Differential Equations with Fuzzy Constant Coeffcients. IJMSI 2025; 20 (1) :79-100
URL: http://ijmsi.ir/article-1-1841-en.html
Abstract:  
In this study, we employ fuzzy Sumudu transform to find the solution for system of linear fuzzy differential equations where the system possesses fuzzy constant coeffcients instead of crisp. For this purpose, fuzzy Sumudu transform has been revisited and a brief comparison with fuzzy Laplace transform is provided alongside, particularly on the scale preserving property. For the sake of comparison, we introduce to the literature a time scaling theorem for fuzzy Laplace transform. Next, the system with fuzzy constant coeffcients is interpreted under the strongly generalized differentiability. From here, new procedures for solving the systems are proposed. A numerical example is then carried out for solving a system adapted from fuzzy radioactive decay model. Conclusion is drawn in the last section and some potential research directions are given.
Type of Study: Research paper | Subject: General

References
1. N. A. Abdul Rahman, M. Z. Ahmad, Applications of the Fuzzy Sumudu Transform for the Solution of First Order Fuzzy Differential Equations, Entropy, 17(7), (2015), 4582-4601. [DOI:10.3390/e17074582]
2. N. A. Abdul Rahman, M. Z. Ahmad, Fuzzy Sumudu Transform for Solving Fuzzy Partial Differential Equations, Journal of Nonlinear Science and Applications, 9(5), (2016), 3226-3239. [DOI:10.22436/jnsa.009.05.111]
3. N. A. Abdul Rahman, M. Z. Ahmad, Solving Fuzzy Fractional Differential Equations Using Fuzzy Sumudu Transform, Journal of Nonlinear Science and Applications, 6, (2017), 19-28.
4. N. A. Abdul Rahman, M. Z. Ahmad, Solving Fuzzy Volterra Integral Equations via Fuzzy Sumudu Transform, Applied Mathematics and Computational Intelligence, 10(5), (2017), 2620-2632. [DOI:10.22436/jnsa.010.05.28]
5. M. Z. Ahmad, N. A. Abdul Rahman, Explicit Solution of Fuzzy Differential Equations by Mean of Fuzzy Sumudu Transform, International Journal of Applied Physics and Mathematics, 5(2), (2015), 86-93. [DOI:10.17706/ijapm.2015.5.2.86-93]
6. T. Allahviranloo, The Adomian Decomposition Method for Fuzzy System of Linear Equations, Applied Mathematics and Computation, 163(2), (2015), 553-563. [DOI:10.1016/j.amc.2004.02.020]
7. T. Allahviranloo, M. B. Ahmadi, Fuzzy Laplace Transforms, Soft Computing, 14(3), (2010), 235-243. [DOI:10.1007/s00500-008-0397-6]
8. T. Allahviranloo, N. Ahmady, E. Ahmady, Numerical Solution of Fuzzy Differential Equations by Predictor-corrector Method, Information Sciences, 177(7), (2007), 1633-1647. [DOI:10.1016/j.ins.2006.09.015]
9. B. Bede, S. G. Gal, Generalizations of the Differentiability of Fuzzy-number-valued Functions with Applications to Fuzzy Differential Equations, Fuzzy Sets and Systems, 151(3), (2005), 581-599. [DOI:10.1016/j.fss.2004.08.001]
10. B. Bede, I. J. Rudas, A. L. Bencsik, First Order Linear Fuzzy Differential Equations under Generalized Differentiability, Information Sciences, 177(7), (2007), 1648-1662. [DOI:10.1016/j.ins.2006.08.021]
11. T. Caraballo, D. Cheban, Almost Periodic and Almost Automorphic Solutions of Linear Differential/difference Equations without Favard's Separation Condition. I, Journal of Differential Equations, 246(1), (2009), 108-128. [DOI:10.1016/j.jde.2008.04.001]
12. Y. Chalco-Cano, H. Román-Flores, On New Solutions of Fuzzy Differential Equations, Chaos, Solitons & Fractals, 38(1), (2008), 112-119. [DOI:10.1016/j.chaos.2006.10.043]
13. S. S. L. Chang, L. A. Zadeh, On Fuzzy Mapping and Control, IEEE Transactions on Systems, Man, and Cybernetics, (1), (1972), 30-34. [DOI:10.1109/TSMC.1972.5408553]
14. Y. A. Chirkunov, Linear Autonomy Conditions for the Basic Lie Algebra of a System of Linear Differential Equations, Doklady Mathematics, 79(3), (2009), 415-417. [DOI:10.1134/S1064562409030302]
15. O. S. Fard, N. Ghal-Eh, Numerical Solutions for Linear System of First-order Fuzzy Differential Equations with Fuzzy Constant Coeffcients, Information Sciences, 181(20), (2011), 4765-4779. [DOI:10.1016/j.ins.2011.06.007]
16. M. Friedman, M. Ma, A. Kandel, Numerical Solutions of Fuzzy Differential and Integral Equations, Fuzzy Sets and Systems, 106(1), (1999), 35-48. [DOI:10.1016/S0165-0114(98)00355-8]
17. Z. Gouyandeh, A. Armand, Numerical Solutions of Fuzzy Linear System Differential Equations and Application of a Radioactivity Decay Model, Communications on Advanced Computational Science with Applications, (2013), 1-11. [DOI:10.5899/2013/cacsa-00005]
18. Z. Guang-Quan, Fuzzy Continuous Function and its Properties, Fuzzy Sets and Systems, 43(2), (1991), 159-171. [DOI:10.1016/0165-0114(91)90074-Z]
19. Y. Guo, Y. Wang, Decay of Dissipative Equations and Negative Sobolev Spaces, Communications in Partial Differential Equations, 37(12), (2012), 2165-2208. [DOI:10.1080/03605302.2012.696296]
20. A. K. Haydar, Fuzzy Sumudu Transform for Fuzzy nth-order Derivative and Solving Fuzzy Ordinary Differential Equations, International Journal of Science and Research, 4(12), (2015), 1372-1378. [DOI:10.21275/v4i12.NOV152204]
21. R. Jafari, S. Razvarz, A. Gegov, S. Paul, S. Keshtkar, Fuzzy Sumudu Transform Approach to Solving Fuzzy Differential Equations with z-numbers, In Advanced Fuzzy Logic Approaches in Engineering Science, IGI Global, (2019), 18-48. [DOI:10.4018/978-1-5225-5709-8.ch002]
22. O. Kaleva, A Note on Fuzzy Differential Equations, Nonlinear Analysis: Theory, Methods & Applications, 64(5), (2006), 895-900. [DOI:10.1016/j.na.2005.01.003]
23. A. Kaufmann, M. M. Gupta, Fuzzy Continuous Function and its Properties, Van Nostrand Reinhold, New York, 1985.
24. A. Khastan, J. J. Nieto, R. Rodríguez-López, Periodic Boundary Value Problems for First-order Linear Differential Equations with Uncertainty Under Generalized Differentiability, Information Sciences, 222, (2013), 544-558. [DOI:10.1016/j.ins.2012.07.057]
25. M. Ma, M. Friedman, A. Kandel, Numerical Solutions of Fuzzy Differential Equations, Fuzzy Sets and Systems, 105(1), (1999), 133-138. [DOI:10.1016/S0165-0114(97)00233-9]
26. S. Momani, Z. Odibat, Numerical Approach to Differential Equations of Fractional Order, Journal of Computational and Applied Mathematics, 207(1), (2007), 96-110. [DOI:10.1016/j.cam.2006.07.015]
27. M. Mosleh, Fuzzy Neural Network for Solving a System of Fuzzy Differential Equations, Applied Soft Computing, 13(8), (2013), 3597-3607. [DOI:10.1016/j.asoc.2013.04.013]
28. M. Mosleh, M. Otadi, Approximate Solution of Fuzzy Differential Equations under Generalized Differentiability, Applied Mathematical Modelling, 39(10), (2015), 3003-3015. [DOI:10.1016/j.apm.2014.11.035]
29. M. Najariyan, M. Mazandarani, A Note on Numerical Solutions for Linear System of First-order Fuzzy Differential Equations with Fuzzy Constant Coeffcients, Information Sciences, 305, (2015), 93-96. [DOI:10.1016/j.ins.2015.02.006]
30. M. L. Puri, D. A. Ralescu, Differentials of Fuzzy Functions, Journal of Mathematical Analysis and Applications, 91(2), (1983), 552-558. [DOI:10.1016/0022-247X(83)90169-5]
31. A. Rajkumar, C. Jesuraj, Solution of Fuzzy Differential Equation of Order 2 by Intuitionistic Fuzzy Numbers (IFS), In International Conference on Intelligent Computing, Information and Control Systems, (2019), 292-298. [DOI:10.1007/978-3-030-30465-2_33]
32. M. Wang, Y. Zhang, Two Kinds of Free Boundary Problems for the Diffusive Preypredator Model, Nonlinear Analysis: Real World Applications, 24, (2015), 73-82. [DOI:10.1016/j.nonrwa.2015.01.004]
33. H. C. Wu, The Improper Fuzzy Riemann Integral and its Numerical Integration, Information Sciences, 111(1), (1998), 109-137. [DOI:10.1016/S0020-0255(98)00016-4]
34. J. Xu, Z. Liao, Z. Hu, Class of Linear Differential Dynamical Systems with Fuzzy Initial Condition, Fuzzy Sets and Systems, 158(21), (2007), 2339-2358. [DOI:10.1016/j.fss.2007.04.016]
35. L. A. Zadeh, Fuzzy sets, Information and Control, 8(3), (1965), 338-353. [DOI:10.1016/S0019-9958(65)90241-X]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb