Volume 20, Issue 1 (4-2025)                   IJMSI 2025, 20(1): 13-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajimohammadi Z, Parand K, Pakniyat A. An Advanced Numerical Approach To Solve Viscous Flow Via Modified Generalized Laguerre Functions. IJMSI 2025; 20 (1) :13-41
URL: http://ijmsi.ir/article-1-1839-en.html
Abstract:  
This paper presents an advanced numerical approach that applies the quasilinearization method (QLM) and collocation method (CM) based on modified generalized Laguerre functions (MGLFs) to solve a nonlinear system of ordinary differential equations governing viscous flow with heat transfer and magnetic fields on a semi-infinite domain. We demonstrate the effectiveness and accuracy of the proposed method by comparing it with previous well-known methods. The results show that the proposed method provides an effcient and accurate solution to the problem.
Type of Study: Research paper | Subject: General

References
1. P. Agarwal, F. Qi, M. Chand, Sh. Jain, Certain Integrals Involving the Generalized Hypergeometric Function and the Laguerre Polynomials, Journal of Computational and Applied Mathematics, 313, (2017), 307-317. [DOI:10.1016/j.cam.2016.09.034]
2. F. T. Akyildiz, H. Bellout, K. Vajravelu, Diffusion of Chemically Reactive Species in a Porous Medium Over a Stretching Sheet, Journal of mathematical analysis and applications, 320(1), (2006), 322-339. [DOI:10.1016/j.jmaa.2005.06.095]
3. U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations, Siam, 1998. [DOI:10.1137/1.9781611971392]
4. F. B. Babolghani, K. Parand, Comparison Between Hermite and Sinc Collocation Methods for Solving Steady Slow of a Third Grade Fluid in a Porous Half Space, Proceedings of the International Conference on Scientific Computing, (2013), 124.
5. A. H. Bhrawy, A. S. Alofi, A Jacobi-Gauss Collocation Method for Solving Nonlinear Lane-Emden Type Equations, Communications in Nonlinear Science and Numerical Simulation, 17(1), (2012), 62-70. [DOI:10.1016/j.cnsns.2011.04.025]
6. J. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications Inc., New York, 2000.
7. J. Boyd, C. Rangan, P. Bucksbaum, Pseudospectral Methods on a Semi-Infinite Interval With Application to the Hydrogen Atom: a Comparison of the Mapped Fourier-Sine Method With Laguerre Series and Rational Chebyshev Expansions, Journal of Computational Physics, 188(1), (2003), 56-74. [DOI:10.1016/S0021-9991(03)00127-X]
8. O. Cherroud, S. A. Yahiaoui, M. Bentaiba, Generalized Laguerre Polynomials With Position-Dependent Effective Mass Visualized via Wigner's Distribution Functions, Journal of Mathematical Physics, 58(6), (2017), 063503. [DOI:10.1063/1.4984310]
9. C. Christov, A Complete Orthonormal System of Functions in L^2(-∞,∞) Space, SIAM Journal on Applied Mathematics, 42(6), (1982), 1337-1344. [DOI:10.1137/0142093]
10. F. Comte, Ch. Cuenod, M. Pensky, Y. Rozenholc, Laplace Deconvolution on the Basis of Time Domain Data and Its Application to Dynamic Contrast-Enhanced Imaging, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(1), (2017), 69-94. [DOI:10.1111/rssb.12159]
11. O. R. Coulaud, D. Funaro, O. Kavian, Laguerre Spectral Approximation of Elliptic Problems in Exterior Domains, Computer Methods in Applied Mechanics and Engineering, 80(1-3), (1990), 451-458. [DOI:10.1016/0045-7825(90)90050-V]
12. L. J. Crane, Flow Past a Stretching Plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), (1970), 645-647. [DOI:10.1007/BF01587695]
13. M. Dehghan, F. Fakhar-Izadi, The Spectral Collocation Method With Three Different Bases for Solving a Nonlinear Partial Differential Equation Arising in Modeling of Nonlinear Waves, Mathematical and Computer Modelling, 53(9-10), (2011), 1865-1877. [DOI:10.1016/j.mcm.2011.01.011]
14. F. Fakhar-Izadi, M. Dehghan, The Spectral Methods for Parabolic Volterra Integro Differential Equations, Journal of Computational and Applied Mathematics, 235(14), (2011), 4032-4046. [DOI:10.1016/j.cam.2011.02.030]
15. D. Funaro, Polynomial Approximation of Differential Equations, Springer Science & Business Media, 2008.
16. B. Guo, J. Shen, Zh Wang, A Rational Approximation and Its Applications to Differential Equations on the Half Line, Journal of scientific computing, 15(2), (2000), 117-147. [DOI:10.1023/A:1007698525506]
17. B. Guo, J. Shen, C. Xu, Generalized Laguerre Approximation and Its Applications to Exterior Problems, Journal of computational Mathematics, (2005), 113-130.
18. E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics, 8, (1993).
19. Z. Hajimohammadi, F. Baharifard, A. Ghodsi, K. Parand, Fractional Chebyshev Deep Neural Network (FCDNN) for Solving Differential Models, Chaos, Solitons & Fractals, 153, (2021), 111530. [DOI:10.1016/j.chaos.2021.111530]
20. Z. Hajimohammadi, K. Parand, A New Numerical Solution for Solving the Flow of Eyring-Powell Fluid Problem via Fractional Rational Generalized Laguerre Polynomials, 48th Annual Iranian Mathematics Conference, 2017.
21. G. Hojjati, K. Parand, An Effcient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations, Int. J. Math. Comp. Sci, 7(4), (2011), 182-187.
22. S. Kazem, J. A. Rad, K. Parand, M. Shaban, H. Saberi, The Numerical Study on the Unsteady Flow of Gas in a Semi-Infinite Porous Medium Using an RBF Collocation Method, International Journal of Computer Mathematics, 89(16), (2012), 2240-2258. [DOI:10.1080/00207160.2012.704995]
23. S. A. Kechil, I. Hashim, Series Solution of Flow Over Nonlinearly Stretching Sheet With Chemical Reaction and Magnetic Field, Physics Letters A, 372(13), (2008), 2258-2263. [DOI:10.1016/j.physleta.2007.11.027]
24. Ch. Lin, Application of a V-belt Continuously Variable Transmission System by Using a Composite Recurrent Laguerre Orthogonal Polynomial Neural Network Control System and Modified Particle Swarm Optimization, Journal of Vibration and Control, 23(9), (2017), 1437-1462. [DOI:10.1177/1077546315593839]
25. Ch. Lin, Hybrid Recurrent Laguerre-Orthogonal-Polynomials Neural Network Control With Modified Particle Swarm Optimization Application for V-belt Continuously Variable Transmission System, Neural Computing and Applications, 28(2), (2017), 245-264. [DOI:10.1007/s00521-015-2053-2]
26. F. Liu, H. Li, Zh. Wang, Spectral Methods Using Generalized Laguerre Functions for Second and Fourth Order Problems, Numerical Algorithms, 75(4), (2017), 1005-1040. [DOI:10.1007/s11075-016-0228-2]
27. F. J. Liu, Z. Q. Wang, H. Y. Li, A Fully Diagonalized Spectral Method Using Generalized Laguerre Functions on the Half Line, Advances in Computational Mathematics, 43(6), (2017), 1227-1259. [DOI:10.1007/s10444-017-9522-3]
28. R. W. MacCormack, A Numerical Method for Solving the Equations of Compressible Viscous Flow, AIAA journal, 20(9), (1982), 1275-1281. [DOI:10.2514/3.51188]
29. A. M. Makarenkov, E. V. Seregina, M. A. Stepovich, The Projection Galerkin Method for Solving the Time-Independent Differential Diffusion Equation in a Semi-Infinite Domain, Computational Mathematics and Mathematical Physics, 57(5), (2017), 802-814. [DOI:10.1134/S0965542517050074]
30. S. Mall, S. Chakraverty, Application of Legendre Neural Network for Solving Ordinary Differential Equations, Applied Soft Computing, 43, (2016), 347-356. [DOI:10.1016/j.asoc.2015.10.069]
31. S. Mehrkanoon, T. Falck, J. A. K. Suykens, Approximate Solutions to Ordinary Differential Equations Using Least Squares Support Vector Machines, IEEE Trans. Neural Netw. Learn. Syst., 23(9), (2012), 1356-1367. [DOI:10.1109/TNNLS.2012.2202126]
32. I. S. Oyelakin, R. Ghosh, S. Mondal, P. Sibanda, Entropy Generation in Casson Nanofluid Flow Past an Electromagnetic Stretching Riga Plate, Malaysian Journal of Mathematical Sciences, 15(3), (2021), 425-445.
33. I. S. Oyelakin, P. C. Lalramneihmawii, S. Mondal, P. Sibanda, Analysis of DoubleDiffusion Convection on Three-Dimensional MHD Stagnation Point Flow of a Tangent Hyperbolic Casson Nanofluid, International Journal of Ambient Energy, 43(1), (2020), 1854-1865. [DOI:10.1080/01430750.2020.1722964]
34. I. S. Oyelakin, P. Mondal, S. Mondal, T. R. Mahapatra, P. Sibanda, Rheological Analysis of Suspended Single-Walled Carbon Nanotubes in a Walters' B Fluid, Nanoscience & Nanotechnology-Asia, 11(6), (2021), 87-95. [DOI:10.2174/2210681210999200819160223]
35. I. S. Oyelakin, PC. Lalramneihmawii, S. Mondal, S.K. Nandy, P. Sibanda, Thermophysical Analysis of Three‐Dimensional Magnetohydrodynamic Flow of a Tangent Hyperbolic Nanofluid, Engineering Reports, 2(4), (2017), e12144. [DOI:10.1002/eng2.12144]
36. I. S. Oyelakin, S. Mondal, P. Sibanda, Unsteady Casson Nanofluid Flow Over a Stretching Sheet With Thermal Radiation, Convective and Slip Boundary Conditions, Alexandria Engineering Journal, 55(2), (2016), 1025-1035. [DOI:10.1016/j.aej.2016.03.003]
37. I. S. Oyelakin, S. Mondal, P. Sibanda, Unsteady Mixed Convection in Nanofluid Flow Through a Porous Medium with Thermal Radiation Using the Bivariate Spectral Quasilinearization Method, Journal of Nanofluids, 6(2), (2020), 273-281. [DOI:10.1166/jon.2017.1310]
38. I. S. Oyelakin, S. Mondal, P. Sibanda, Nonlinear Radiation in Bioconvective Casson Nanofluid Flow, International Journal of Applied and Computational Mathematics, 5(5), (2019), 1-20. [DOI:10.1007/s40819-019-0705-0]
39. I. S. Oyelakin, S. Mondal, P. Sibanda, S. S. MOTSA, A Multi-Domain Bivariate Approach for Mixed Convection in a Casson Nanofluid with Heat Generation, Walailak Journal of Science and Technology, 16(9), (2019), 681-699. [DOI:10.48048/wjst.2019.3049]
40. R. K. Pandey, N. Kumar, Solution of Lane-Emden Type Equations Using Bernstein Operational Matrix of Differentiation, New Astronomy, 17(3), (2012), 303-308. [DOI:10.1016/j.newast.2011.09.005]
41. K. Parand, A. A. Aghaei, S. Kiani, T. IlkhasZadeh, Z. Khosravi, A Neural Network Approach for Solving Nonlinear Differential Equations of Lane-Emden Type, Engineering with Computers, 40, (2024), 953-969. [DOI:10.1007/s00366-023-01836-5]
42. K. Parand, A. A. Aghaei, M. Jani, A. Ghodsi, A New Approach to the Numerical Solution of Fredholm Integral Equations Using Least Squares-Support Vector Regression, Math. Comput. Simul., 180, (2021), 114-128. [DOI:10.1016/j.matcom.2020.08.010]
43. K. Parand, F. B. Babolghani, Applying the Modified Generalized Laguerre Functions for Solving Steady Flow of a Third Grade Fluid in a Porous Half Space, World Applied Science Journal, 17(4), (2012), 467-472.
44. K. Parand, F. B. Babolghani, Modified Generalized Laguerre Functions for a Numerical Investigation of Flow and Diffusion of Chemically Reactive Species Over a Nonlinearly Stretching Sheet, World Applied Sciences Journal, 17(12), (2012), 1578-1587.
45. K. Parand, F. Baharifard, F. B. Babolghani, Comparison Between Rational Gegenbauer and Modified Generalized Laguerre Functions Collocation Methods for Solving the Case of Heat Transfer Equations Arising in Porous Medium, International Journal of Industrial Mathematics, 4(2), (2012), 107-122.
46. K. Parand, M. Dehghan, A. Pirkhedri, Sinc-Collocation Method for Solving the Blasius Equation, Physics Letters A, 373(44), (2009), 4060-4065. [DOI:10.1016/j.physleta.2009.09.005]
47. K. Parand, M. Dehghan, A. Pirkhedri, The Use of Sinc-Collocation Method for Solving Falkner-Skan Boundary-Layer Equation, International journal for numerical methods in fluids,68(1), (2012), 36-47. [DOI:10.1002/fld.2493]
48. K. Parand, M. Dehghan, A. Pirkhedri, The Sinc-Collocation Method for Solving the Thomas-Fermi Equation, Journal of Computational and Applied Mathematics, 237(1), (2013), 244-252. [DOI:10.1016/j.cam.2012.08.001]
49. K. Parand, M. Dehghan, A. Taghavi, Modified Generalized Laguerre Function Tau Method for Solving Laminar Viscous Flow, International Journal of Numerical Methods for Heat & Fluid Flow, 20(7), (2010), 728-743. [DOI:10.1108/09615531011065539]
50. K. Parand, Z. Delafkar, N. Pakniat, A. Pirkhedri, M. K. Haji, Collocation Method Using Sinc and Rational Legendre Functions for Solving Volterra's Population Model, Communications in Nonlinear Science and Numerical Simulation, 16(4), (2011), 1811-1819. [DOI:10.1016/j.cnsns.2010.08.018]
51. K. Parand, Z. Hajimohammadi, Using Modified Generalized Laguerre Functions, QLM and Collocation Method for Solving an Eyring-Powell Problem, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4), (2018), 182. [DOI:10.1007/s40430-018-1114-8]
52. K. Parand, M. Hemami, Application of Meshfree Method Based on Compactly Supported Radial Basis Function for Solving Unsteady Isothermal Gas Through a Micro-Nano Porous Medium, Iranian Journal of Science and Technology, Transactions A: Science, 41(3), (2017), 677-684. [DOI:10.1007/s40995-017-0293-y]
53. K. Parand, S. Khaleqi, The Rational Chebyshev of Second Kind Collocation Method for Solving a Class of Astrophysics Problems, The European Physical Journal Plus, 131(2), (2016), 1-24. [DOI:10.1140/epjp/i2016-16024-8]
54. K. Parand, Y. Lotfi, J. A. Rad, An Accurate Numerical Analysis of the Laminar Two Dimensional Flow of an Incompressible Eyring-Powell Fluid Over a Linear Stretching Sheet, The European Physical Journal Plus, 132(9), (2017), 397. [DOI:10.1140/epjp/i2017-11693-3]
55. K. Parand, M. M. Moayeri, S. Latifi, M. Delkhosh, A Numerical Investigation of the Boundary Layer Flow of an Eyring-Powell Fluid Over a Stretching Sheet via Rational Chebyshev Functions, The European Physical Journal Plus, 132(7), (2017), 325. [DOI:10.1140/epjp/i2017-11600-0]
56. K. Parand, M. Nikarya, J. A. Rad, F. Baharifard, A New Reliable Numerical Algorithm Based on the First Kind of Bessel Functions to Solve Prandtl-Blasius Laminar Viscous Flow Over a Semi-Infinite Flat Plate, Zeitschrift für Naturforschung A, 67(12), (2012), 665-673. [DOI:10.5560/zna.2012-0065]
57. K. Parand, M. Razzaghi, Rational Chebyshev Tau Method for Solving Higher-Order Ordinary Differential Equations, International Journal of Computer Mathematics, 81(1), (2004), 73-80. [DOI:10.1080/00207160310001606061b]
58. K. Parand, M. Razzaghi, Rational Chebyshev Tau Method for Solving Volterra's Population Model, Applied Mathematics and Computation, 149(3), (2004), 893-900. [DOI:10.1016/j.amc.2003.09.006]
59. K. Parand, M. Razzaghi, Rational Legendre Approximation for Solving Some Physical Problems on Semi-Infinite Intervals, Physica Scripta,69(5), (2004), 353. [DOI:10.1238/Physica.Regular.069a00353]
60. K. Parand, M. Razzaghi, R. Sahleh, M. Jani, Least Squares Support Vector Regression for Solving Volterra Integral Equations, Engineering with Computers, 38, (2022), 789-796. [DOI:10.1007/s00366-020-01186-6]
61. K. Parand, A. R. Rezaei, A. Taghavi, Lagrangian Method for Solving Lane-Emden Type Equation Arising in Astrophysics on Semi-Infinite Domains, Acta Astronautica, 67(7-8), (2010), 673-680. [DOI:10.1016/j.actaastro.2010.05.015]
62. K. Parand, M. Shahini, Rational Chebyshev Pseudospectral Approach for Solving Thomas-Fermi Equation, Physics Letters A, 373(2), (2009), 210-213. [DOI:10.1016/j.physleta.2008.10.044]
63. K. Parand, M. Shahini, A. Taghavi, Generalized Laguerre Polynomials and Rational Chebyshev Collocation Method for Solving Unsteady Gas Equation, Int. J. Contemp. Math. Sci, 4(21),(2009), 1005-1011.
64. K. Parand, A. Taghavi, Generalized Laguerre Polynomials Collocation Method for Solving Lane-Emden Equation, Applied Mathematical Sciences, 2(60), (2008), 2955-2961.
65. K. Parand, A. Taghavi, Rational Scaled Generalized Laguerre Function Collocation Method for Solving the Blasius Equation, Journal of Computational and Applied Mathematics, 233(4), (2009), 980-989. [DOI:10.1016/j.cam.2009.08.106]
66. K. Parand, A. Taghavi, M. Shahini, Comparison Between Rational Chebyshev and Modified Generalized Laguerre Functions Pseudospactral Methods for Solving Lane-Emden and Unsteady Gas Equations, Acta physica polonica B, 40(6), (2009).
67. J. A. Rad, K. Parand, S. Kazem, A Numerical Investigation to Viscous Flow Over Nonlinearly Stretching Sheet With Chemical Reaction, Heat Transfer and Magnetic Field, International Journal of Applied and Computational Mathematics, 3(2), (2017), 919-935. [DOI:10.1007/s40819-016-0143-1]
68. B. C. Sakiadis, Boundary-Layer Behavior on Continuous Solid Surfaces: I. BoundaryLayer Equations for Two-Dimensional and Axisymmetric Flow, AIChE Journal, 7(1), (1961), 26-28. [DOI:10.1002/aic.690070108]
69. B. C. Sakiadis, Boundary-Layer Behavior on Continuous Solid Surfaces: II. The Boundary Layer on a Continuous Flat Surface", AiChE journal, 7(2), (1961), 221-225. [DOI:10.1002/aic.690070211]
70. K. M. Sanni, S. Asghar, M. Jalil, N. F. Okechi, Flow of Viscous Fluid Along a Nonlinearly Stretching Curved Surface, Results in Physics, 7, (2017), 1-4. [DOI:10.1016/j.rinp.2016.11.058]
71. I. I. Sharapudinov, Special Series in Laguerre Polynomials and Their Approximation Properties, Siberian Mathematical Journal, 58(2), (2017), 338-362. [DOI:10.1134/S0037446617020173]
72. J. Shen, Stable and Effcient Spectral Methods in Unbounded Domains Using Laguerre Functions, SIAM Journal on Numerical Analysis, 38(4), (2000), 1113-1133. [DOI:10.1137/S0036142999362936]
73. Y. Shi, Ch. Tian, Zh. Liu, Ch Liang, A New Laguerre-Based Discontinuous Galerkin Time-Domain Method, Microwave and Optical Technology Letters, 59(7), (2017), 1499-1503. [DOI:10.1002/mop.30577]
74. H. Siyyam, Laguerre Tau Methods for Solving Higher-Order Ordinary Differential Equations", Journal of Computational Analysis and Applications, 3(2), (2001), 173-182. [DOI:10.1023/A:1010141309991]
75. J. Stoer, R. Bulirsch, Introduction to numerical analysis, Springer Science & Business Media, 12, (2013).
76. J. A. K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers, Neural Process. Lett.,9(3), (1999), 293-300. [DOI:10.1023/A:1018628609742]
77. T. Tajvidi, M. Razzaghi, M. Dehghan, Modified Rational Legendre Approach to Laminar Viscous Flow Over a Semi-Infinite Flat Plate, Chaos, Solitons & Fractals, 35(1), (2008), 59-66. [DOI:10.1016/j.chaos.2006.05.031]
78. F. K. Tsou, E. M. Sparrow, R. Jh. Goldstein, Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface, International Journal of Heat and Mass Transfer, 10(2), (1967), 219-235. [DOI:10.1016/0017-9310(67)90100-7]
79. N. Vukovi, M. Petrovi, Z. Miljkovi, A Comprehensive Experimental Evaluation of Orthogonal Polynomial Expanded Random Vector Functional Link Neural Networks for Regression, Applied Soft Computing, 70, (2018), 1083-1096. [DOI:10.1016/j.asoc.2017.10.010]
80. A. W. Wazwaz, A New Algorithm for Solving Differential Equations of Lane-Emden Type, Applied Mathematics and Computation, 118(2-3), (2001), 287-310. [DOI:10.1016/S0096-3003(99)00223-4]
81. S. Xu, Y. Li, T. Huang, R. Chan, A Sparse Multiwavelet-Based Generalized Laguerre-Volterra Model for Identifying Time-Varying Neural Dynamics from Spiking Activities, Entropy, 19(8), (2017), 425-446. [DOI:10.3390/e19080425]
82. A. Yıldırım, T. Öziş , Solutions of Singular IVPs of Lane-Emden Type by Homotopy Perturbation Method, Physics Letters A, 369(1-2), (2007), 70-76. [DOI:10.1016/j.physleta.2007.04.072]
83. S. A. Yousefi, Legendre Wavelets Method for Solving Differential Equations of Lane-Emden Type, Applied Mathematics and Computation, 181(2), (2006), 1417-1422. [DOI:10.1016/j.amc.2006.02.031]
84. Ş. Yüzbaşı, A Numerical Method for Solving Second-Order Linear Partial Differential Equations Under Dirichlet, Neumann and Robin Boundary Conditions, International Journal of Computational Methods, 14(02), (2017), 1750015. [DOI:10.1142/S0219876217500153]
85. Ş. Yüzbaşı, M. Sezer, An Improved Bessel Collocation Method With a Residual Error Function to Solve a Class of Lane-Emden Differential Equations, Mathematical and Computer Modelling, 57(5-6), (2013), 1298-1311. [DOI:10.1016/j.mcm.2012.10.032]
86. Ch. Zhang, D. Gu, Zh. Wang, H. Li, Effcient Space-Time Spectral Methods for SecondOrder Problems on Unbounded Domains, Journal of Scientific Computing, 72(2), (2017), 679-699. [DOI:10.1007/s10915-017-0374-2]
87. Di. Zhang, X. Miao, New Unconditionally Stable Scheme for Telegraph Equation Based on Weighted Laguerre Polynomials, Numerical Methods for Partial Differential Equations, 33(5), (2017), 113-130. [DOI:10.1002/num.22155]
88. R. Zhang, Zh. Wang, B. Guo, Mixed Fourier-Laguerre Spectral and Pseudospectral Methods for Exterior Problems Using Generalized Laguerre Functions, Journal of Scientific Computing, 36(2), (2008), 263-283. [DOI:10.1007/s10915-008-9189-5]
89. Z. Ziabakhsh, G. Domairry, H. Bararnia, H. Babazadeh, Analytical Solution of Flow and Diffusion of Chemically Reactive Species Over a Nonlinearly Stretching Sheet Immersed in a Porous Medium, Journal of the Taiwan Institute of Chemical Engineers, 41(1), (2010), 22-28. [DOI:10.1016/j.jtice.2009.04.011]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb