1. T. Akman, B. Yildiz, D. Baleanu, New Discretization of Caputo-Fabrizio Derivative, Comp. Appl. Math., 37, (2018), 3307-3333. [
DOI:10.1007/s40314-017-0514-1]
2. A. Atangana, On the New Fractional Derivative and Application to Nonlinear Fishers Reaction-diffusion Equation, Appl. Math. Comput., 273, (2016), 948-956. [
DOI:10.1016/j.amc.2015.10.021]
3. A. Atangana, B. S. T. Alkahtani, Extension of the Resistance, Inductance, Capacitance Electrical Circuit to Fractional Derivative without Singular Kernel, Adv. Mech. Eng., 7, DOI:10.1177/1687814055911937. [
DOI:10.1177/1687814015591937]
4. A. Atangana, R. T. Alqahtani, Numerical Approximation of the Space-time CaputoFabrizio Fractional Derivative and Application to Groundwater Pollution Equation, Adv. Differ. Equ., 156, DOI:10.1186/s13662-016-0871-x. [
DOI:10.1186/s13662-016-0871-x]
5. A. Atangana, J. J. Nieto, Numerical Solution for the Model of RLC Circuit via the Fractional Derivative without Singular Kernel, Adv. Mech. Eng., 7, (2015), 1-7. [
DOI:10.1177/1687814015613758]
6. S. M. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour, On Approximate Solutions for Two Higher-order Caputo-Fabrizio Fractional Integro-differential Equations, Adv. Differ. Equ., 221, (2017), 1-11. [
DOI:10.1186/s13662-017-1258-3]
7. M. Caputo, M. Fabrizio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1, (2015), 73-85.
8. J. D. Djida, A. Atangana, More Generalized Groundwater Model with Space-time Caputo Fabrizio Fractional Differentiation, Numer. Methods Partial Differ. Equ., 33, (2017), 1616-1627. [
DOI:10.1002/num.22156]
9. B. Fakhr Kazemi, H. Jafari, H, Error Estimate of the MQ-RBF Collocation Method for Fractional Differential Equations with Caputo-Fabrizio Derivative, Math. Sci., 11, (2017), 297-305. [
DOI:10.1007/s40096-017-0232-2]
10. G. Femandz-Anaya, F. J. Valdes-Parada, J. Alvarea-Ramirez, On Generalized Fractional Cattaneo's Equation, Physica A: statical. Mech. Appl., 390, (2011), 4198-4202. [
DOI:10.1016/j.physa.2011.07.001]
11. M. A. Firoozjaee, H. Jafari, A. Lia, D. Baleanu, Numerical Approach of Fokker-Planck Equation with Caputo-Fabrizio Fractional Derivative Using Ritz Approximation, J. Compu. Appl. Math., 339, (2018), 367-373. [
DOI:10.1016/j.cam.2017.05.022]
12. H. P. Ghazizadeh, M. Maerefat, A. Azim, Explicit and Implicit Finite Difference Schemes for Fractional Cattaneo Equation, J. Comput, Phys, 229, (2010), 7042-7057. [
DOI:10.1016/j.jcp.2010.05.039]
13. F. El-Ghenbazia, M. Tayeb Meftah, Solution of Nonlocal Schrodinger Equation via the Caputo-Fabrizio Definition for Some Quantum Systems, Reports. Math. Physics, 85, (2020), 57-67. [
DOI:10.1016/S0034-4877(20)30010-0]
14. B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Science Press, Beijing, China, 2011.
15. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. [
DOI:10.1142/9789812817747]
16. Z. Liu, A. Cheng, X. Li, A Second Order Crank-Nicolson Scheme for Fractional Cattaneo Equation Based on New Fractional Derivative, Appl. Math. Comput., 311, (2017), 361-374. [
DOI:10.1016/j.amc.2017.05.032]
17. J. R. Loh, Y. T. Toh, On the New Properties of Caputo-Fabrizio Operator and its Application in Deriving Shifted Legendre Operational Matrix, Appl. Numer. Math., 132, (2018), 138-153. [
DOI:10.1016/j.apnum.2018.05.016]
18. J. Losada, J. J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1, (2015), 87-92.
19. K. M. Owolabi, A. Atangana, Analysis and Application of New Fractional AdamsBashforth Scheme with Caputo-Fabrizio Derivative, Chaos. Solitons. Fract, 105, (2017), 111-119. [
DOI:10.1016/j.chaos.2017.10.020]
20. D. W. Peaceman, H. H. Rachford, The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math., 3, (1955), 23-41. [
DOI:10.1137/0103003]
21. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
22. H. T. Qi, X. W. Guo, The Cattaneo-type Time Fractional Heat Conduction Equation for Laser Heating, Fract. Difer. Appl., 66, (2013), 834-831. [
DOI:10.1016/j.camwa.2012.11.021]
23. H. Qi, X. Jiang, Solution of the Space-time Fractional Cattaneo Diffusion Equation, Physica A: statical. Mech. Appl., 390, (2011), 1876-1883. [
DOI:10.1016/j.physa.2011.02.010]
24. J. Ren, G. H. Gao, Efficient and Stable Numerical Methods for the Two-dimensional Fractional Cattaneo Equation, Numer. Algor., 69, (2015), 795-818. [
DOI:10.1007/s11075-014-9926-9]
25. J. Ren, Z. Sun, Efficient Numerical Solution of the Multi-term Time Fractional Diffusionwave Equation, East Asian J. Appl. Math., 5, (2015), 1-28. [
DOI:10.4208/eajam.080714.031114a]
26. A. A. Samarskii, V. B. Andreev, Difference Methods for Elliptic Equation, Nauka, Moscow, 1976.
27. J. She, M. Chen, A Second-order Accurate Scheme for Two-dimensional Space Fractional Diffusion Equations with Time Caputo-Fabrizio Fractional Derivative, Appl. Numer. Math., 151, (2020), 246-262. [
DOI:10.1016/j.apnum.2020.01.007]
28. Z. Soori, A. Aminataei, A New Approximation to Caputo-type Fractional Diffusion and Advection Equations on Non-uniform Meshes, Appl. Numer. Math., 144, (2019), 21-41. [
DOI:10.1016/j.apnum.2019.05.014]
29. Z. Soori, A. Aminataei, Effect of the Nodes Near Boundary Points on the Stability Analysis of Sixth-order Compact Finite Difference ADI Scheme for the Two-dimensional Time Fractional Diffusion-wave Equation, Transactions of A. Razmadze Mathematical Institute, 172, (2018), 582-605. [
DOI:10.1016/j.trmi.2018.03.003]
30. Z. Soori, A. Aminataei, Numerical Solution of Space Fractional Diffusion Equation by Spline Method Combined with Richardson Extrapolation, Comput. Appl. Mathe., 139, (2020), 1-18. [
DOI:10.1007/s40314-020-01160-4]
31. Z. Soori, A. Aminataei, Sixth-order Non-uniform Combined Compact Difference Scheme for Multi-term Time Fractional Diffusion-wave Equation, Appl. Numer. Math., 131, (2018), 72-94. [
DOI:10.1016/j.apnum.2018.04.006]
32. J. V. C. Sousa, E. C. Oliveira, Two New Fractional Derivatives of Variable Order with Non-singular Kernel and Fractional Differential Equation, Comp. Appl. Math., 37, (2018), 5375-5394. [
DOI:10.1007/s40314-018-0639-x]
33. Z. Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009.
34. X-J. Yang, H. M. Machado, A New Fractional Operator of Variable Order: Application in the Description of Anomalous Diffusion, Phys A. Stat. Mech. Appl., 481, (2017), 276-283. [
DOI:10.1016/j.physa.2017.04.054]
35. X-J. Yang, H. M. Srivastava, T. J. A. Machado, A New Fractional Derivative without Singular Kernel, Therm. Sci., 20, (2016), 753-756. [
DOI:10.2298/TSCI151224222Y]
36. Y. N. Zhang, Z. Z. Sun, X. Zhao, Compact Alternating Direction Implicit Scheme for the Two-dimensional Fractional Diffusion-wave Equation, Siam J. Numer. Anal., 50, (2012), 1535-1555. [
DOI:10.1137/110840959]