1. A. R. Aftabizadeh, J. Wiener, Oscillatory Properties of First Order Linear Functional Differential Equations, Applicable Analysis, 20(3-4), (1985), 165-187. [
DOI:10.1080/00036818508839568]
2. A. R. Aftabizadeh, J. Wiener, J. M. Xu, Oscillatory and Periodic Solutions of Delay Differential Equations with Piecewise Constant Argument, Proceedings of the american mathematical society, (1987), 673-679. [
DOI:10.1090/S0002-9939-1987-0877038-7]
3. M. Akhmet, Nonlinear Hybrid Continuous/discrete-time Models, Springer Science and Business Media, 8, 2011. [
DOI:10.2991/978-94-91216-03-9]
4. H. Bereketoglu, G. Seyhan, F. Karakoc, On a Second Order Differential Equation with Piecewise Constant Mixed Arguments, Carpathian Journal of Mathematics, 27(1), (2011), 1-12. [
DOI:10.37193/CJM.2011.01.13]
5. S. Busenberg, K. L. Cooke, Models of Vertically Transmitted Diseases with Sequentialcontinuous Dynamics, Nonlinear phenomena in mathematical sciences, (1982), 179-187. [
DOI:10.1016/B978-0-12-434170-8.50028-5]
6. K. S. Chiu, T. Li, Oscillatory and Periodic Solutions of Differential Equations with Piecewise Constant Generalized Mixed Arguments, Mathematische Nachrichten, 292(10), (2019), 2153-2164. [
DOI:10.1002/mana.201800053]
7. K. L. Cooke, J. Wiener, Retarded Differential Equations with Piecewise Constant Delays, Journal of Mathematical Analysis and Applications, 99(1), (1984), 265-297. [
DOI:10.1016/0022-247X(84)90248-8]
8. K. L. Cooke, J. Wiener, A Survey of Differential Equations with Piecewise Continuous Arguments, Delay differential equations and dynamical systems, (1991), 1-15. [
DOI:10.1007/BFb0083475]
9. K. Gopalsamy, M. R. S. Kulenovi'c, G. Ladas, On a Logistic Equation with Piecewise Constant Arguments, Differential and Integral equations, 4(1), (1991), 215-223. [
DOI:10.57262/die/1371569646]
10. K. Gopalsamy, G. Ladas, On the Oscillation and Asymptotic Behavior of N′(t) = N(t)[a + bN(t − τ) − cN2(t − τ), Quarterly of Applied Mathematics, 48, (1990), 433-440. [
DOI:10.1090/qam/1074958]
11. K. Gopalsamy, P. Liu, Persistence and Global Stability in a Population Model, Journal of Mathematical Analysis and Applications, 224(1), (1998), 59-80. [
DOI:10.1006/jmaa.1998.5984]
12. F. Gurcan, S. Kartal, I. Ozturk, F. Bozkurt, Stability and Bifurcation Analysis of a Mathematical Model for Tumor-immune Interaction with Piecewise Constant Arguments of Delay, Chaos, Solitons and Fractals, 68, (2014), 169-179. [
DOI:10.1016/j.chaos.2014.08.001]
13. F. Karako¸c, Asymptotic Behaviour of a Population Model with Piecewise Constant Argument, Applied Mathematics Letters, 70, (2017), 7-13. [
DOI:10.1016/j.aml.2017.02.014]
14. T. K¨upper, R. Yuan, On Quasi-periodic Solutions of Differential Equations with Piecewise Constant Argument, Journal of mathematical analysis and applications, 267(1), (2002), 173-193. [
DOI:10.1006/jmaa.2001.7761]
15. C. G. Philos, On Oscillations of Some Difference Equations, Funkcial. Ekvac, 34(1), (1991), 157-172. [
DOI:10.1016/0022-247X(91)90134-L]
16. M. Pinto, Asymptotic Equivalence of Nonlinear and Quasi Linear Differential Equations with Piecewise Constant Arguments, Mathematical and Computer Modelling, 49(9-10), (2009), 1750-1758. [
DOI:10.1016/j.mcm.2008.10.001]
17. Y. Rong, H. Jialin, The Existence of Almost Periodic Solutions for a Class of Differential Equations with Piecewise Constant Argument, Nonlinear Analysis: Theory, Methods and Applications, 28(8), (1997), 1439-1450. [
DOI:10.1016/0362-546X(95)00225-K]
18. S. M. Shah, J. Wiener, Advanced Differential Equations with Piecewise Constant Argument Deviations, International Journal of Mathematics and Mathematical Sciences, 6, (1983). [
DOI:10.1155/S0161171283000599]