Volume 19, Issue 2 (9-2024)                   IJMSI 2024, 19(2): 95-109 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmad O, Ahmad N. Nonuniform Semi-orthogonal Wavelet Frames on Non-Archimedean Local Fields of Positive Characteristic. IJMSI 2024; 19 (2) :95-109
URL: http://ijmsi.ir/article-1-1774-en.html
Abstract:  

In this paper, we introduce the notion of nonuniform semiorthogonal wavelet frame associated with nonuniform frame multiresolution analysis on non-Archimedean fields and provide their characterization by means of some basic equations in the frequency domain.

Type of Study: Research paper | Subject: General

References
1. O. Ahmad, N. Ahmad, Construction of Nonuniform Wavelet Frames on NonArchimedean Fields, Math. Phy. Anal. Geom., 23(47), (2020). [DOI:10.1007/s11040-020-09371-1]
2. O. Ahmad, M. Y. Bhat, N. A. Sheikh, Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic, Numer. Funct. Anal. Opt., 42(3), (2021), 344-370. [DOI:10.1080/01630563.2021.1878370]
3. O. Ahmad, Nonuniform Periodic Wavelet Frames on Non-Archimedean Fields, Annales Universitatis Mariae Curie-Sklodowska, sectio A - Mathematica, (2), (2020), 1-17. [DOI:10.17951/a.2020.74.2.1-17]
4. O. Ahmad, N. A. Sheikh, M. A. Ali, Nonuniform Nonhomogeneous Dual Wavelet Frames in Sobolev Spaces in L2(K), Afr. Math., 31, (2020), 1145-1156. [DOI:10.1007/s13370-020-00786-1]
5. O. Ahmad, N. Ahmad, Explicit Construction of Tight Nonuniform Framelet Packets on Local Fields, Operators and Matrices, 15(1), (2021), 131-149. [DOI:10.7153/oam-2021-15-10]
6. O. Ahmad, F. A. Shah, N. A. Sheikh, Gabor Frames on Non-Archimedean Fields,Int. J. Geom. Methods Mod. Phys., 15, (2018), Art. ID 1850079. [DOI:10.1142/S0219887818500792]
7. O. Ahmad, N. A. Sheikh, On Characterization of Nonuniform Tight Wavelet Frames on Local Fields,Anal. Theory Appl., 34, (2018), 135-146. [DOI:10.4208/ata.2018.v34.n2.4]
8. J. J. Benedetto, R. L. Benedetto, A Wavelet Theory for Local Fields and Related Groups, J. Geom. Anal., 14, (2004), 423-456. [DOI:10.1007/BF02922099]
9. P. G. Casazza, O. Christensen, Weyl-Heisenberg Frames for Subspaces of L2(R), Proc. Amer. Math. Soc., 129, (2001), 145-154. [DOI:10.1090/S0002-9939-00-05731-2]
10. O. Christensen, An Introduction to Frames and Riesz Bases, Birkh¨auser, Boston, 2003. [DOI:10.1007/978-0-8176-8224-8]
11. C. K. Chui, X. Shi, Inequalities of Littlewood-Paley Type for Frames and Wavelets, SIAM J. Math. Anal., 24, (1993), 263-277. [DOI:10.1137/0524017]
12. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992. [DOI:10.1137/1.9781611970104]
13. I. Daubechies, A. Grossmann, Y. Meyer, Painless Non-orthogonal Expansions, J. Math. Phys., 27(5), (1986), 1271-1283. [DOI:10.1063/1.527388]
14. R. J. Duffin, A. C. Shaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc., 72, (1952), 341-366. [DOI:10.1090/S0002-9947-1952-0047179-6]
15. J. P. Gabardo, M. Nashed, Nonuniform Multiresolution Analyses and Spectral Pairs, J. Funct. Anal., 158, (1998), 209-241. [DOI:10.1006/jfan.1998.3253]
16. H. K. Jiang, D. F. Li, N. Jin, Multiresolution Analysis on Local Fields, J. Math. Anal. Appl., 294, (2004), 523-532. [DOI:10.1016/j.jmaa.2004.02.026]
17. D. F. Li, H. K. Jiang, The Necessary Condition and Sufficient Conditions for Wavelet Frame on Local Fields, J. Math. Anal. Appl., 345, (2008), 500-510. [DOI:10.1016/j.jmaa.2008.04.031]
18. S. G. Mallat, Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R), Trans. Amer. Math. Soc., 315, (1989), 69-87. [DOI:10.1090/S0002-9947-1989-1008470-5]
19. F. A. Shah, Abdullah, Nonuniform Multiresolution Analysis on Local Fields of Positive Characteristic, Complex Anal. Opert. Theory, 9, (2015), 1589-1608. [DOI:10.1007/s11785-014-0412-0]
20. F. A. Shah, O. Ahmad, Wave Packet Systems on Local Fields, J. Geom. Phys, 120, (2017), 5-18. [DOI:10.1016/j.geomphys.2017.05.015]
21. F. A. Shah, M. Y. Bhat, Semi-orthogonal Wavelet Frames on Local Fields, Analysis, 36(3), (2016), 173-181.
22. X. L. Shi, F. Chen, Necessary Conditions and Sufficient Conditions of Affine Frame, Science in China: Series A, 48, (2005), 1369-1378. [DOI:10.1360/04ys0143]
23. M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb