1. 1. T. Becker, V. Weispfenning, Gr¨obner Bases: a Computational Approach to Commutative Algebra, New York: Springer-Verlag, 1993.
2. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen Ringes nach einem Nulldimensionalen Polynomideal, Innsbruck: Univ. Innsbruck, Mathematisches Institut (Diss.), 1965.
3. B. Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction of Gr¨obner Bases, Symbolic and algebraic computation, EUROSAM '79, int. Symp., Marseille 1979, Lect. Notes Comput. Sci., 72, (1979), 3-21. [
DOI:10.1007/3-540-09519-5_52]
4. B. Buchberger, Bruno Buchberger's Ph.D. Thesis 1965: An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal Translation from the German, J. Symb. Comput., 41(3-4), (2006), 475-511. [
DOI:10.1016/j.jsc.2005.09.007]
5. D. Cox, A. Little, D. O'Shea Ideals, Varieties, and Algorithms. An introduction to Computational Algebraic Geometry and Commutative Algebra, 4th edition, Springer, 2015. [
DOI:10.1007/978-3-319-16721-3]
6. M. Dehghani Darmian, A. Hashemi, Parametric FGLM Algorithm, J. Symb. Comput., 82, (2017), 38-56. [
DOI:10.1016/j.jsc.2016.12.006]
7. M. Dehghani Darmian, A. Hashemi, A. Montes, Erratum to "A new algorithm for discussing Gr¨obner bases with parameters" [J. Symbolic Comput. 33 (1-2) (2002) 183-208], J. Symb. Comput., 46(10), (2011), 1187-1188. [
DOI:10.1016/j.jsc.2011.05.002]
8. J.-C. Faug'ere, A New Efficient Algorithm for Computing Gr¨obner Bases (F4), J. Pure Appl. Algebra, 139(1-3), (1999), 61-88. [
DOI:10.1016/S0022-4049(99)00005-5]
9. J.-C. Faug'ere, A New Efficient Algorithm for Computing Gr¨obner Bases without Reduction to Zero (F5), In Proceedings of the 2002 international symposium on symbolic and algebraic computation, ISSAC 2002, Lille, France, July 07-10, 2002. New York, ACM Press, (2002), 75-83.
10. R. Gebauer, H. M¨oller, On an Installation of Buchberger's Algorithm, J. Symb. Comput., 6(2-3), (1988), 275-286. [
DOI:10.1016/S0747-7171(88)80048-8]
11. A. Hashemi, M. Dehghani Darmian, M. Barkhordar, Gr¨obner Systems Conversion, Math. Comput. Sci., 11(1), (2017), 61-77. [
DOI:10.1007/s11786-017-0295-3]
12. A. Hashemi, M. Dehghani Darmian, B. M.-Alizadeh, Applying Buchberger's Criteria on Montes's DisPGB Algorithm, Bull. Iran. Math. Soc., 38(3), (2012), 715-724.
13. A. Hashemi, B. M.-Alizadeh, M. Dehghani Darmian, Minimal Polynomial Systems for Parametric Matrices, Linear Multilinear Algebra, 61(2), (2013), 265-272. [
DOI:10.1080/03081087.2012.670235]
14. M. Kalkbrener, On the Complexity of Gr¨obner Bases Conversion, J. Symb. Comput., 28(1-2), (1999), 265-273. [
DOI:10.1006/jsco.1998.0276]
15. D. Kapur, An Approach for Solving Systems of Parametric Polynomial Equations, In Saraswat, Vijay, Van Hentenryck, Pascal (Eds.), Principles and Practice of Constraint Programming. MIT Press, (1995), 217-224.
16. D. Kapur, Y. Sun, D. Wang, A New Algorithm for Computing Comprehensive Gr¨obner Systems, In Proceedings of the 35th international symposium on symbolic and algebraic computation, ISSAC 2010, Munich, Germany, July 25-28, 2010. New York, NY: Association for Computing Machinery (ACM), (2010), 29-36. [
DOI:10.1145/1837934.1837946]
17. D. Kapur, Y. Sun, D. Wang, An Efficient Algorithm for Computing a Comprehensive Gr¨obner System of a Parametric Polynomial System, J. Symb. Comput., 49, (2013), 27-44. [
DOI:10.1016/j.jsc.2011.12.015]
18. D. Lazard, Gr¨obner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations, Computer algebra, EUROCAL '83, Proc. Conf., London 1983, Lect. Notes Comput. Sci., 162, (1983), 146-156. [
DOI:10.1007/3-540-12868-9_99]
19. M. Manubens, A. Montes, Improving the DisPGB Algorithm Using the Discriminant Ideal, J. Symb. Comput., 41(11), (2006), 1245-1263. [
DOI:10.1016/j.jsc.2005.09.013]
20. M. Manubens, A. Montes, Minimal Canonical Comprehensive Gr¨obner Systems, J. Symb. Comput., 44(5), (2009), 463-478. [
DOI:10.1016/j.jsc.2007.07.022]
21. A. Montes, A New Algorithm for Discussing Gr¨obner Bases with Parameters, J. Symb. Comput., 33(2), (2002), 183-208. [
DOI:10.1006/jsco.2001.0504]
22. A. Montes, The Gr¨obner Cover, 27, Cham: Springer, 2018.
23. A. Montes, J. Castro, Solving the Load Flow Problem Using the Gr¨obner Basis, SIGSAM Bull., 29(1), (1995), 1-13. [
DOI:10.1145/216685.216686]
24. A. Montes, M. Wimber, Gr¨obner Bases for Polynomial Systems with Parameters, J. Symb. Comput., 45(12), (2010), 1391-1425. [
DOI:10.1016/j.jsc.2010.06.017]
25. K. Nabeshima, A Speed-up of the Algorithm for Computing Comprehensive Gr¨obner Systems, In Proceedings of the 2007 international symposium on symbolic and algebraic computation, ISSAC 2007, Waterloo, ON, Canada, July 29-August 1, 2007. New York, NY: Association for Computing Machinery (ACM), (2007), 299-306. [
DOI:10.1145/1277548.1277589]
26. W. Y. Sit, M. Wimber, An Algorithm for Solving Parametric Linear Systems, J. Symb. Comput., 13(4), (1992), 353-394. [
DOI:10.1016/S0747-7171(08)80104-6]
27. A. Suzuki, Y. Sato, A Simple Algorithm to Compute Comprehensive Gr¨obner Bases Using Gr¨obner Bases, In Proceedings of the 2006 international symposium on symbolic and algebraic computation, ISSAC 06, Genova, Italy, July 9-12, 2006. New York, NY: Association for Computing Machinery (ACM), (2006), 326-331. [
DOI:10.1145/1145768.1145821]
28. V. Weispfenning, Comprehensive Gr¨obner Bases, J. Symb. Comput., 14(1), (1992), 1-29. [
DOI:10.1016/0747-7171(92)90023-W]
29. V. Weispfenning, Canonical Comprehensive Gr¨obner Bases, J. Symb. Comput., 36(3-4), (2003), 669-683. [
DOI:10.1016/S0747-7171(03)00099-3]
30. M. Wimber, Gr¨obner Bases for Families of Affine or Projective Schemes, J. Symb. Comput., 42(8), (2007), 803-834. [
DOI:10.1016/j.jsc.2007.05.001]