Volume 18, Issue 2 (10-2023)                   IJMSI 2023, 18(2): 51-65 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramadan Mehdi A. On A Class of Soc-Injective Modules. IJMSI 2023; 18 (2) :51-65
URL: http://ijmsi.ir/article-1-1626-en.html
Abstract:  
Let R be a ring. The class of SA-injective right R-modules (SAIR) is introduced as a class of soc-injective right R-modules. Let N be a right R-module. A right R-module M is said to be SA-N-injective if every R-homomorphism from a semi-artinian submodule of N into M extends to N. A module M is called SA- njective, if M is SA-R-injective. We characterize rings over which every right module is SA-injective. Conditions under which the class SAIR is closed under uotient (resp. directsums, pure homomorphic images) are given. The definability of the class SAIR is studied. Finally, relations between SA-injectivity and certain generalizations of injectivity are given.

References
1. I. Amin, M. Yousif, N. Zeyada, Soc-injective Rings and Modules, Comm. Algebra, 33, (2005), 4229-4250. [DOI:10.1080/00927870500279001]
2. F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974. [DOI:10.1007/978-1-4684-9913-1]
3. P. E. Bland, Rings and Their Modules, Walter de Gruyter and Co., Berlin, 2011. [DOI:10.1515/9783110250237]
4. H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956. [DOI:10.1515/9781400883844]
5. J. L. Chen, N. Q. Ding, On n-coherent Rings, Comm. Algebra, 24, (1996), 3211-3216. [DOI:10.1080/00927879608825742]
6. E. E. Enochs, A Note on absolutely Pure Modules, Canad. Math. Bull., 19, (1976), 361-362. [DOI:10.4153/CMB-1976-054-5]
7. E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, 2000. [DOI:10.1515/9783110803662]
8. P. A. Grillet, Abstract Algebra, 2nd edition, GTM 242, Springer, 2007.
9. F. Kasch, Modules and Rings, Academic Press, New York, 1982.
10. J. Lambek, A Module is Flat if and only if Its Character Module Is Injective, Canad. Math. Bull., 7, (1964), 237-243. [DOI:10.4153/CMB-1964-021-9]
11. W. K. Nicholson, M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics 158, Cambridge Univ. Press, Cambridge, 2003. [DOI:10.1017/CBO9780511546525]
12. A. R. Mehdi, Purity Relative to Classes of Finitely Presented Modules, PhD Thesis, Manchester University, 2013. [DOI:10.1142/S0219498813500503]
13. A. R. Mehdi, On L-injective Modules, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2), (2018), 176-192. [DOI:10.20537/vm180204]
14. R. Y. C. Ming, On (von Neumann) Regular Rings, Proc. Edinburgh Math. Soc., 19, (1974), 89-91. [DOI:10.1017/S0013091500015418]
15. S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, Cambridge Univ. Press, UK: Cambridge, 1990. [DOI:10.1017/CBO9780511600692]
16. M. Prest, Purity, Spectra and Localisation, Cambridge University Press, 2009. [DOI:10.1017/CBO9781139644242]
17. B. Stenström, Coherent Tings and F P-injective Modules, J. London. Math. Soc., 2, (1970), 323-329. [DOI:10.1112/jlms/s2-2.2.323]
18. B. Stenström, Rings of Quotients, Sepringer-Verlage, New York, 1975. [DOI:10.1007/978-3-642-66066-5]
19. A. K. Tiwary, B. M. Pandeya, Pseudo Projective and Pseudo Injective Modules, Indian J. Pure Appl. Math., 9(9), (1978), 941-949.
20. A. A. Tuganbaev, Multiplication Modules, J. Mathematical Sciences, 123, (2004), 3839-3905. [DOI:10.1023/B:JOTH.0000036653.76231.05]
21. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
22. M. Zayed, On f-injective Modules, Arch. Math., Birkhäuser Verlag, Basel, 78, (2002),345-349. [DOI:10.1007/s00013-002-8256-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb