Volume 18, Issue 2 (10-2023)                   IJMSI 2023, 18(2): 31-50 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shanker G, Rani S, Kaur K. Projectively Flat Finsler Spaces with Transformed Metrics. IJMSI 2023; 18 (2) :31-50
URL: http://ijmsi.ir/article-1-1554-en.html
Abstract:  
In this paper, we consider some special Finsler spaces obtained via Randers-β change. First, we find the fundamental metric tensor and Cartan tensor of these metrics. Next, we establish a general formula for the inverse tensor of fundamental metric tensors of these metrics. Finally, we find the necessary and sufficient conditions under which these metrics are projectively flat, and we give examples to support our results.
Type of Study: Research paper | Subject: General

References
1. S. I. Amari, H. Nagaoka, Methods of Information Geometry, Translations of Mathematical Monographs, AMS, 191, Oxford Univ. Press, 2000.
2. P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Vol. 58, Springer Science & Business Media, 2013.
3. S. A. Baby, G. Shanker, On Randers-conformal Change of Finsler Space with Special (α,β)-metrics, International Journal of Contemporary Mathematical Sciences, 11(9), (2016), 415-423. [DOI:10.12988/ijcms.2016.6846]
4. D. Bao, S. S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, SpringerVerlag, New York, 2000. [DOI:10.1007/978-1-4612-1268-3]
5. S. S. Chern, Finsler Geometry is just Riemannian Geometry without Quadratic Restriction, Notices of AMS, 43(9), (1996), 959-963.
6. S. S. Chern, Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, Singapore, 2005. [DOI:10.1142/5263]
7. G. Hamel, U¨ber die Geometrieen, in denen die Geraden die K¨ urzesten sind, Mathematische Annalen, 57(2), (1903), 231-264. [DOI:10.1007/BF01444348]
8. D. Hilbert, Mathematische Probleme, In Gesammelte Abhandlungen, Springer, Berlin, Heidelberg, 1970, 290-329. [DOI:10.1007/978-3-662-25726-5_19]
9. M. Matsumoto, On C-reducible Finsler-spaces, Tensor N. S., 24, (1972), 29-37.
10. M. Matsumoto, On Finsler Spaces with Randers Metric and Special Forms of Important Tensors, J. Math. Kyoto Univ., 14(3), (1974), 477-498. [DOI:10.1215/kjm/1250523171]
11. M. Matsumoto, On Finsler Spaces with 1-form Metric II, Berwald-Moor's metric L =(y^1y^2...y^n)^1/n, Tensor N. S., 32, (1978), 275-278.
12. M. Matsumoto, A Slope of Mountain is a Finsler Surface with Respect to a Time Measure, Journal of Mathematics of Kyoto University, 29(1), (1989), 17-25. [DOI:10.1215/kjm/1250520303]
13. S. Rani, G. Shanker, On S-curvature of a Homogeneous Finsler Space with Randers Changed Square Metric, Facta Universitatis, Series: Mathematics and Informatics, 35(3), (2020), 673-691. [DOI:10.22190/FUMI2003673R]
14. S. Rani, G. Shanker, On CW-translations of a Homogeneous Finsler Space with (α,β)- metrics, Balkan Journal of Geometry and Its Applications, to appear.
15. G. Shanker, S. A. Baby, On the Riemann and Ricci Curvature of Finsler Spaces with Special (α,β)-metric, International Journal of Mathematical Combinatorics, 4, (2016), 61-69.
16. G. Shanker, P. Gupta, Projectively Flat Finsler Spaces with Special (α; β)-metric, Journal of International Academy of Physical Sciences, 17(4), (2013), 369-376.
17. G. Shanker, S. Rani, On S-curvature of a Homogeneous Finsler Space with Square Metric, International Journal of Geometric Methods in Modern Physics, 17(2), (2020), 2050019 (16 pages). [DOI:10.1142/S021988782050019X]
18. G. Shanker, S. Rani, K. Kaur, Dually Flat Finsler Spaces Associated with Randers-β Change, Journal of Rajasthan Academy of Physical Sciences, 18(1-2), (2019), 95-106.
19. G. Shanker, R. K. Sharma, R. D. S. Kushwaha, On the Matsumoto Change of a Finsler Space with m^th Root Metric, Acta Matematica Academie Paedagogiace Nyiregyhaziensis, 32(2), (2017), 255-264.
20. C. Shibata, On Invariant Tensors of β-change of Finsler Metrics, Journal of Mathematics of Kyoto University, 24(1), (1984), 163-188. [DOI:10.1215/kjm/1250521391]
21. H. Shimada, On Finsler Spaces with the Metric L = sqrt[m]{a_{i_1i_2...i_m}y^{i_1}y^{i_2}...y^{i_m}}, Tensor N. S., 33, (1979), 365-372.
22. A. Tayebi, E. Peyghan, On C3-Like Finsler Metrics, Iranian Journal of Mathematical Sciences and Informatics, 7(1), (2012), 1-6.
23. B. Tiwari, M. Kumar, On Randers Change of a Finsler Space with mth-root Metric, International Journal of Geometric Methods in Modern Physics, 11(10), (2014), 1450087 (13 pages). [DOI:10.1142/S021988781450087X]
24. R. Yadav, G. Shanker, On Some Projectively Flat (α; β)-metrics, Gulf Journal of Mathematics, 1, (2013), 72-77. [DOI:10.56947/gjom.v1i1.240]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb