Volume 19, Issue 1 (4-2024)                   IJMSI 2024, 19(1): 161-174 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pathak A, Kumar D. Multiresolution Analysis on Sobolev Space over Local Fields of Positive Characteristic and Characterization of Scaling Function. IJMSI 2024; 19 (1) :161-174
URL: http://ijmsi.ir/article-1-1443-en.html
Abstract:  
A general concept of wavelets and multiresolution analysis on Sobolev space over local fields of positive characteristic (Hs(K)) is given. A characterization of the scaling functions associated with an MRA is also given.
Type of Study: Research paper | Subject: General

References
1. C. K. Chui, An Introduction to Wavelets, Wavelet Analysis and Its Applications, Academic Press, Boston, MA, 1992. [DOI:10.1016/B978-0-12-174590-5.50029-0]
2. E. Hern'andez, G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton,FL, 1996.
3. Ashish Pathak, Guru P. Singh, Wavelet in Sobolve Space over Local Fields of Positive Characteristics, International Journal of Wavelets, Multiresolution and Information Processing, 16(4), (2018), 1850027(1-16). [DOI:10.1142/S0219691318500273]
4. S. Mallat, Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R), Transactions of the American Mathematical Society, 315 (1), (1989), 69-87. [DOI:10.2307/2001373]
5. Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.
6. I. Novikov, V. Protasov, M. Skopina, Wavelet theory, Translations of Mathematical Monographs, American Mathematical Society, 239, 2011. [DOI:10.1090/mmono/239]
7. S. Dahlke, Multiresolution Analysis and Wavelets on Locally Compact Abelian Groups, In: P. J. Laurent, A. Lemehaute and L. L. Schumaker, Eds., Wavelets, Images and Surface Fitting, A. K. Peters Wellesley, Wellesley, (1994), 141-156.
8. J. J. Benedetto, R. L. Benedetto, A Wavelet Theory for Local Fields and Related Groups, Journal of Geometric Analysis, 14, (2004), 423-456. [DOI:10.1007/BF02922099]
9. R. L. Benedetto, Examples of Wavelets for Local Fields, in Wavelets, Frames and Operator Theory, Contemporary Mathematics, American Mathematical Society,Providence, RI, 345, (2004), 27-47. [DOI:10.1090/conm/345/06239]
10. S. Albeverio, S. Kozyrev, Multidimensional Basis of p-adic Wavelets and Representation Theory, P-Adic Numbers Ultrametric Analysis, and Applications, 1, (2009), 181-189. [DOI:10.1134/S2070046609030017]
11. A. Y. Khrennikov, V. M. Shelkovich, M. Skopina, p-adic Refinable Functions and MRAbased Wavelets, Journal of Approximation Theory, 161(1), (2009), 226-238. [DOI:10.1016/j.jat.2008.08.008]
12. S. Kozyrev, Wavelet Theory as p-adic Spectral Analysis, Izv. Ross. Akad. Nauk Ser. Mat., 66(2), (2002), 149-158 (in Russian) https://doi.org/10.1070/IM2002v066n02ABEH000381 [DOI:10.4213/im381; translation in Izv. Math., 66(2), (2002), 367-376.]
13. H. Jiang, D. Li, N. Jin, Multiresolution Analysis on Local Fields, Journal of Mathematical Analysis and Applications, 294(2), (2004), 523-532. [DOI:10.1016/j.jmaa.2004.02.026]
14. D. Ramakrishnan, R. J. Valenza, Fourier Analysis on Number Fields, Graduate Texts in Mathematics, Springer-Verlag, New York, 186, 1999. [DOI:10.1007/978-1-4757-3085-2]
15. M. H. Taibleson, Fourier Analysis on Local Fields, Mathematical Notes, Princeton University Press, Princeton, NJ, 15, 1975.
16. Biswaranjan Behera, Qaiser Jahan, Multiresolution Analysis on Local Fields and Characterization of Scaling Functions, Advances in Pure and Applied Mathematics, 3, (2012), 181-202. [DOI:10.1515/apam-2011-0016]
17. H. M. Srivastava, W. Z. Lone, F. A. Shah, A. I. Zayed, Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures, Entropy, Multidisciplinary Digital Publishing Institute(MDPI), 24, (2022), 1340. [DOI:10.3390/e24101340]
18. H. M. Srivastava, Firdous A. Shah, Aajaz A. Teali, On Quantum Representation of the Linear Canonical Wavelet Transform, Universe, Multidisciplinary Digital Publishing Institute(MDPI), 8(9), (2022), 477. [DOI:10.3390/universe8090477]
19. H. M. Srivastava, Firdous A. Shah, Waseem Z. Lone, Fractional Nonuniform Multiresolution Analysis in L2(R), Mathematical Methods in the Applied Sciences, 44(11), (2021), 9351-9372. [DOI:10.1002/mma.7363]
20. H. M. Srivastava, F. A. Shah, W. Z. Lone, Quadratic-phase Wave-packet Transform in L2(R), Symmetry, Multidisciplinary Digital Publishing Institute(MDPI), 14(10), (2022), 1-16. [DOI:10.3390/sym14102018]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb