Volume 16, Issue 1 (4-2021)                   IJMSI 2021, 16(1): 105-121 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghian A, Shahzadeh Fazeli S A, Karbassi S M. Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members. IJMSI 2021; 16 (1) :105-121
URL: http://ijmsi.ir/article-1-1274-en.html
Abstract:  
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members in each cluster. In this paper, we use hierarchical SVD to cluster graphs with it's adjacency matrix. In this algorithm, users can select a range for the number of members in each cluster. The results show in hierarchical SVD algorithm, clustering measurement parameters are more desirable and clusters are as dense as possible. The complexity of this algorithm is less than the complexity of SVD clustering method.
Type of Study: Research paper | Subject: General

References
1. T. P. Cason, P. A. Absil, P. Van Dooren, Iterative methods for low rank approximation of graph similarity matrices textit{ Linear Algebra and its Applications},textbf{1}(438),(2013), 1863-1882. [DOI:10.1016/j.laa.2011.12.004]
2. A. K. Cline, S. Dhillon, Computation of the Singular Value Decomposition, 14, The University of Texas at Austin, 2007.
3. B.Datta, textit{Numerical linear algebr and Applications}, Second edition, SIAM, 2010. [DOI:10.1137/1.9780898717655]
4. J. Demmel, Accurate singular value decomposition of structured matrices textit{ SIAM},textbf{21}(2),(1997), 562-580. [DOI:10.1137/S0895479897328716]
5. J. Dongarra, Accuracy of computed singular values, textit{SIAM},textbf{1}(4), (1983), 712-719 . [DOI:10.1137/0904049]
6. E. P. Douglas, textit{Clustering datasets with singular value decomposition}, College of Charleston, 2008.
7. G. H. Golub, C. Reinsch, Singular value decomposition and least squares solutions, textit{Number Math}, textbf{1}(14), (1973), 403-420. [DOI:10.1007/BF02163027]
8. L. Rokach, O. Maimon, Data Mining and Knowledge Discovery Handbook chapter: Clustering Methods,textit{ Springer US},(2005), 321-352. [DOI:10.1007/0-387-25465-X_15]
9. S. E. Schaeffer, Survey: Graph clustering, textit{ Computer Science Review},textbf{1}(1), (2007), 27-64. [DOI:10.1016/j.cosrev.2007.05.001]
10. G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems textit{SIAM}, textbf{1}(15) (1973), 727-764. [DOI:10.1137/1015095]
11. X. Zhou, SVD-based incremental approaches for recommender systems, textit{ Computer and System Sciences},textbf{1}(81), (2015), 717-733. [DOI:10.1016/j.jcss.2014.11.016]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb