دوره 20، شماره 1 - ( 1-1404 )                   جلد 20 شماره 1 صفحات 204-193 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hesamian G, Akbari M G, Shams M. A Fuzzy Multivariate Regression Model to Control Outliers and Multicollinearity Based on Exact Predictors and Fuzzy Responses. IJMSI 2025; 20 (1) :193-204
URL: http://ijmsi.ir/article-1-1926-fa.html
A Fuzzy Multivariate Regression Model to Control Outliers and Multicollinearity Based on Exact Predictors and Fuzzy Responses. مجله علوم ریاضی و انفورماتیک. 1404; 20 (1) :193-204

URL: http://ijmsi.ir/article-1-1926-fa.html


چکیده:  

Multivariate regression is an approach for modeling the linear relationship between several variables. This paper proposed a ridge methodology with a kernel-based weighted absolute error target with exact predictors and fuzzy responses. Some standard goodness-of-fit criteria were also used to examine the performance of the proposed method. The effectiveness of the proposed method was then illustrated through two numerical examples including a simulation study. The effectiveness and advantages of the proposed fuzzy multiple linear regression model were also examined and compared with some well-established methods through some common goodness-of-fit criteria. The numerical results indicated that our prediction/estimation gives more accurate results in cases where multicollinearity and/or outliers occur in the data set.
 

نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb