دوره 19، شماره 1 - ( 1-1403 )                   جلد 19 شماره 1 صفحات 17-1 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lau G, Shiu W, Ng H. On Local Antimagic Chromatic Number of Graphs with Cut-vertices. IJMSI 2024; 19 (1) :1-17
URL: http://ijmsi.ir/article-1-1726-fa.html
On Local Antimagic Chromatic Number of Graphs with Cut-vertices. مجله علوم ریاضی و انفورماتیک. 1403; 19 (1) :1-17

URL: http://ijmsi.ir/article-1-1726-fa.html


چکیده:  
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f:E →{1,... ,|E|} such that for any pair of adjacent vertices x and y, f+(x)≠ f+(y), where the induced vertex label f+(x)= ∑ f(e), with e ranging over all the edges incident to x.  The local antimagic chromatic number of G, denoted by Xla(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, the sharp lower bound of the local antimagic chromatic number of a graph with cut-vertices given by pendants is obtained. The exact value of the local antimagic chromatic number of many families of graphs with cut-vertices (possibly given by pendant edges) are also determined. Consequently, we partially answered Problem 3.1 in [Local antimagic vertex coloring of a graph, Graphs and Combin., 33, (2017),  275--285].
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb