دوره 16، شماره 1 - ( 1-1400 )                   جلد 16 شماره 1 صفحات 76-65 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi R. One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes. IJMSI 2021; 16 (1) :65-76
URL: http://ijmsi.ir/article-1-1284-fa.html
One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes. مجله علوم ریاضی و انفورماتیک. 1400; 16 (1) :65-76

URL: http://ijmsi.ir/article-1-1284-fa.html


چکیده:  
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of minimum distance in several cases and get many records that don’t exist in MinT tables (tables of optimal parameters for linear codes), such as codes over F72 of dimension less than 36. Moreover, using maximal Hermitian curves and their sub-covers, we obtain a necessary and sufficient condition for self-orthogonality and Hermitian self-orthogonally of CL(D, G).
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb