Volume 4, Issue 2 (November 2009)                   IJMSI 2009, 4(2): 55-64 | Back to browse issues page

XML Print


Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q &minus 1, using generalized jacobian of E.

Type of Study: Research paper | Subject: General