دوره 7، شماره 2 - ( 8-1391 )                   جلد 7 شماره 2 صفحات 83-91 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ashrafi N, Ahmadi Z. WEAKLY g(x)-CLEAN RINGS. IJMSI. 2012; 7 (2) :83-91
URL: http://ijmsi.ir/article-1-353-fa.html
WEAKLY g(x)-CLEAN RINGS. مجله علوم ریاضی و انفورماتیک ایرانیان. 1391; 7 (2) :83-91

URL: http://ijmsi.ir/article-1-353-fa.html


چکیده:  

A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this paper we define a ring to be weakly $g(x)$-clean if each element of $R$ can be written as either the sum or difference of a unit and a root of $g(x)$.

نوع مطالعه: پژوهشي | موضوع مقاله: عمومى

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
کد امنیتی را در کادر بنویسید

کلیه حقوق این وب سایت متعلق به نشریه علوم ریاضی و انفورماتیک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved | Iranian Journal of Mathematical Sciences and Informatics

Designed & Developed by : Yektaweb