ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Multipliers of pg-Bessel sequences in Banach spaces
1
12
EN
M. R.
Abdollahpour
mrabdollahpour@yahoo.com
A.
Najati
Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili
a.nejati@yahoo.com
P.
Gavruta
Department of Mathematics, Politehnica University of Timi¸soara, Piat¸a Victoriei
pgavruta@yahoo.com
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
$p$-frames, $g$-frames, $pg$-frames, $qg$-Riesz bases, $(p,q)g$- Bessel multiplier.
http://ijmsi.ir/article-1-802-en.html
http://ijmsi.ir/article-1-802-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs
13
20
EN
Sh.
Sedghi
Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
sedghi_gh@yahoo.com
D.-W.
Lee
Department of Mathematics, Yonsei University, Seoul 120-749, Republic of Korea.
haverd2001@gmail.com
N.
Shobe
Department of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran
nabi_shobe@yahoo.com
Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a
graph with vertex set V , in which two vertices are adjacent if and only if they have a
common neighbor in G. In this paper, we obtain characteristics of congraphs under
graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product,
and Graph join, and relations between Cayley graphs and its congraphs.
Common Neighborhood Graph, Cayley graph, Graph operation.
http://ijmsi.ir/article-1-859-en.html
http://ijmsi.ir/article-1-859-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
On the Hyponormal Property of Operators
21
30
EN
S. M. S.
Nabavi Sales
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
sadegh.nabavi@gmail.com
Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge transform, $tilde{T}_{f}$. Given two continuous functions $f$ and $g$ with the property $f(t)g(t)=t$, we also introduce the $(f,g)$-Aluthge transform, $tilde{T}_{(f,g)}$. The features of these transforms are discussed as well.
Hyponormal operators, Hyponormal property, Aluthge transform, Normal operator
http://ijmsi.ir/article-1-1088-en.html
http://ijmsi.ir/article-1-1088-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
31
50
EN
M.
Didgar
Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.
A.R.
Vahidi
Department of Mathematics, College of Science, Yadegar-e-Emam Khomeyni (RAH) Shahr-e-Rey Branch, Islamic Azad University , Tehran, Iran.
alrevahidi@yahoo.com
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equations with respect to unknown function and its derivatives. An approximate solution can be easily determined by solving the obtained system. Furthermore, this method leads always to the exact solution if the exact solution is a polynomial function of degree up to n. Also, an error analysis is given. In addition, some problems are provided to demonstrate the validity and applicability of the proposed method.
Volterra-Fredholm integral equations, Systems of Volterra-Fredholm integral equations, Mixed Volterra-Fredholm integral equations, Error analysis, Taylor expansion.
http://ijmsi.ir/article-1-1131-en.html
http://ijmsi.ir/article-1-1131-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
On Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions
51
60
EN
A
K. Wanas
Department of Mathematics, College of Science, Baghdad University
abbas.kareem.w@qu.edu.iq
A.
H. Majeed
Department of Mathematics, College of Science, Baghdad University
abbas.alshareefi@yahoo.com
The purpose of the present paper is to introduce and investigate two new subclasses 𝒦𝛴𝑚(𝜆,𝛾;𝛼) and 𝒦∗𝛴𝑚(𝜆,𝛾;𝛽) of 𝛴𝑚 consisting of analytic and 𝑚-fold symmetric bi-univalent functions defined in the open unit disk 𝑈. We obtain upper bounds for the coefficients |𝑎𝑚+1| and |𝑎𝑚| for functions belonging to these subclasses. Many of the well-known and new results are shown to follow as special cases of our results.
Analytic functions, Univalent functions, m-Fold symmetric bi-univalent functions, Coefficient estimates.
http://ijmsi.ir/article-1-1133-en.html
http://ijmsi.ir/article-1-1133-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Lommel Matrix Functions
61
76
EN
A.
Shehata
Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
drshehata2006@yahoo.com
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
Hypergeometric matrix function, Bessel matrix functions, Lommel matrix functions, Matrix recurrence relations, Lommel matrix differential equations.
http://ijmsi.ir/article-1-1135-en.html
http://ijmsi.ir/article-1-1135-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Uniform Number of a Graph
77
99
EN
A.
Kumar
Amrita Vishwa Vidyapeetham, Amrita University, India.
k_abhishek@cb.amrita.edu
E.
Mohankumar
Amrita Vishwa Vidyapeetham, Amrita University, India.
m_elakkiya@cb.amrita.edu
We introduce the notion of uniform number of a graph. The uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a
constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$
is power set of $X = {D(x_i, x_j): x_i neq x_j}.$ We obtain some basic results and compute the newly
introduced graph parameter for some specific graphs.
Graphs, detour distance, uniform number, Hamiltonian connected graphs.
http://ijmsi.ir/article-1-1144-en.html
http://ijmsi.ir/article-1-1144-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Roman k-Tuple Domination in Graphs
101
115
EN
A.
P. Kazemi
U. of Mohaghegh Ardabili
adelpkazemi@yahoo.com
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominating function $f$ on $G$ is called the Roman $k$-tuple domination number of the graph where the weight of $f$ is $f(V)=sum_{vin V}f(v)$.
In this paper, we initiate to study the Roman $k$-tuple domination number of a graph, by giving some sharp bounds for the Roman $k$-tuple domination number of a garph, the Mycieleskian of a graph, and the corona graphs. Also finding the Roman $k$-tuple domination number of some known graphs is our other goal. Some of our results extend these one given by Cockayne and et al. cite{CDHH04} in 2004 for the Roman domination number.
Roman $k$-tuple domination number, Roman $k$-tuple graph, $k$-Tuple domination number, $k$-Tuple total domination number, Mycieleskian of a graph.
http://ijmsi.ir/article-1-1140-en.html
http://ijmsi.ir/article-1-1140-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
A Note on Belief Structures and S-approximation Spaces
117
128
EN
A.
Shakiba
Vali-e-Asr University of Rafsanjan
ali.shakiba@vru.ac.ir
A.
Kafshdar Goharshady
Institute of Science and Technology Austria (IST Austria)
goharshady@ist.ac.at
M. R.
Hooshmandasl
University of Mohaghegh Ardabili
hooshmandasl@yazd.ac.ir
M.
Alambardar Meybodi
University of Isfahan
m.alambardar@sci.ui.ac.ir
We study relations between evidence theory and S-approximation spaces. Both theories have their roots in the analysis of Dempster's multivalued mappings and lower and upper probabilities, and have close relations to rough sets. We show that an S-approximation space, satisfying a monotonicity condition, can induce a natural belief structure which is a fundamental block in evidence theory. We also demonstrate that one can induce a natural belief structure on one set, given a belief structure on another set, if the two sets are related by a partial monotone S-approximation space.
Evidence theory, S-approximation spaces, Rough sets, Partial monotonicity, Qualities of approximation.
http://ijmsi.ir/article-1-1145-en.html
http://ijmsi.ir/article-1-1145-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
129
146
EN
R.
kamel Naji
Department of Mathematics, College of Science,University of Baghdad, Baghdad, Iraq
A.
Adnan Thirthar
Department of Mathematics, College of Science,University of Baghdad, Baghdad, Iraq
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these equilibrium points are established using Lyapunov method. The local bifurcation near the disease free equilibrium point is investigated. Hopf bifurcation condi- tion, which may occurs around the endemic equilibrium point is obtained. The conditions of backward bifurcation and forward bifurcation near the disease free equilibrium point are also determined. Finally,numerical simulations are given to investigate the global dynamics of the system and con rm the obtained analytical results.
Epdemic models, Local stability , Backward bifuraction ,Hopf bifurcation.
http://ijmsi.ir/article-1-1146-en.html
http://ijmsi.ir/article-1-1146-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Existence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator
147
161
EN
M.
Akram
Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 107, KSA
In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and generalized Yosida approximation operator. We also furnish an illustrative example to demonstrate our results. Furthermore, we suggest an iterative algorithm to solve a Yosida inclusion problem under some mild conditions in q-uniformly smooth Banach space and discuss the convergence and uniqueness of the solution.
Graph convergence, Resolvent operator, Iterative algorithm, Yosida approximation operator, Yosida inclusion problem
http://ijmsi.ir/article-1-1150-en.html
http://ijmsi.ir/article-1-1150-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
The Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
163
181
EN
N.
Ghaderi
ferdowsi university of mashhad
najmeh_ghaderi@yahoo.com
M. H.
Farahi
ferdowsi university of mashhad
farahi@math.um.ac.ir
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant and pantograph delay to the solution of nonlinear programming. In truth, the principal problem can be transferred to the quadratic programming problem. Some examples are included to demonstrate the validity and applicability of the technique.
Optimal control with pantograph systems, Optimal control with time delay, Pantograph delay differential equation, Bernstein polynomials.
http://ijmsi.ir/article-1-1154-en.html
http://ijmsi.ir/article-1-1154-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Sharply $(n-2)$-transitive Sets of Permutations
183
190
EN
M.
N. Iradmusa
Shahid Beheshti University
iradmusa@gmail.com
Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called emph{sharply $t$-transitive} if for any given pair of $t$-tuples, exactly one element of $S$ carries the first to the second. In addition, a subset $S$ of $S_n$ is called $t$-intersecting if $fix(h^{-1}g)geq t$ for any two distinct permutations $h$ and $g$ of $S$. In this paper, we prove that there are only two sharply $(n-2)$-transitive subsets of $S_n$ and finally we establish some relations between sharply $k$-transitive subsets and $t$-intersecting subsets of $S_n$ where $k,tin mathbb{Z}$ and $0leq tleq kleq n$.
Symmetric group, Sharply transitive set of permutations, Cayley graph, Intersecting set of permutations
http://ijmsi.ir/article-1-1179-en.html
http://ijmsi.ir/article-1-1179-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
Some Properties of Vector-valued Lipschitz Algebras
191
205
EN
M.
Azizi
Department of Mathematics, University of Isfahan, Isfahan, Iran.
m.azizi@sci.ui.ac.ir, mohsenazizi1366@chmail.ir
E.
Biyabani
Department of Mathematics, University of Isfahan, Isfahan, Iran.
rejali@gmail.com, rejali@sci.ui.ac.ir
A.
Rejali
Department of Mathematics, Islamic Azad University, majlesi Branch, Isfahan, Iran
A.Biyabani@iaumajlesi.ac.ir, biyabani91@yahoo.com
Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be
a nonempty set. We study the structure of the arbitrary intersection of
vector-valued Lipschitz algebras, and define a special Banach subalgebra of
$cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly,
we investigate $C-$character amenability of $ILip_J (X,E)$.
Character amenability, Lipschitz algebra, Metric space, Vector-valued functions.
http://ijmsi.ir/article-1-1181-en.html
http://ijmsi.ir/article-1-1181-en.pdf
ACECR at Tarbiat Modares University
Iranian Journal of Mathematical Sciences and Informatics
1735-4463
2008-9473
15
2
2020
10
1
ABSTRACTS IN PERSIAN Vol.15, No.2
207
221
EN
The Name of Authors
in this Volume
fatemeh.bardestani@gmail.com
Please see the full text contains the Pesian abstracts for this volume.
ABSTRACTS, PERSIAN, Vol. 15, No. 2
http://ijmsi.ir/article-1-2014-en.html
http://ijmsi.ir/article-1-2014-en.pdf