AU - Akkus, I.
AU - Kilic, E.
AU - Omur, N.
TI - Diophantine Equations Related with Linear Binary Recurrences
PT - JOURNAL ARTICLE
TA - IJMSI
JN - IJMSI
VO - 17
VI - 1
IP - 1
4099 - http://ijmsi.ir/article-1-1319-en.html
4100 - http://ijmsi.ir/article-1-1319-en.pdf
SO - IJMSI 1
AB - In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This paper continues and extends a previous work of Bahramian and Daghigh.
CP - IRAN
IN - Department of Mathematics, Faculty of Arts and Science, Kırıkkale University, TR-71450 Kırıkkale, Turkey
LG - eng
PB - IJMSI
PG - 11
PT - Research paper
YR - 2022