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ABSTRACT. The largest class of hyperstructures is the one which satisfies
the weak properties. We connect the theory of P-hopes, a large class
of hyperoperations, with the Lie-Santilli admissibility used in Hardonic
Mechanics. This can be achieved by a kind of Rees’ sandwich hyperop-

eration.

Keywords: Hyperstructures, H,—structures, Hopes.
2000 Mathematics subject classification: 20N20, 16Y99.

1. INTRODUCTION

1.1. Notice. The largest class of hyperstructures is the one which satisfies the
weak properties. These are called H,—structures introduced in 1990 [13], and
they proved to have a lot of applications on several applied science such as
linguistic, biology, chemistry, physics, and so on. The H,—structures satisfy
the weak arioms where the non-empty intersection replaces the equality. The
H, —structures can be used in models as an organized devise. In this paper we
continuous our study on the Lie-Santilli’s admissibility needed in applications,
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specially, in producin energy according to R.M. Santilli’s iso-theory.

Recall some basic definitions:

Definition 1.1. A set H equipped with at least one hyperoperation (we ab-
breviate by hope any hyperoperation) - : H x H — P(H), is called Hyper-
structure, where P(H) is the set of all subsets of H. We abbreviate by WASS
the weak associativity:(xy)z Nx(yz) # O,Vz,y,z € H and by COW the weak
commutativity: xy Nyx # O,Vr,y € H.

The hyperstructure (H, -) is called H,-semigroup if it is WASS and is called
H,-group if it is reproductive H,-semigroup, i.e. *H = Hx = H,Vz € H.
The hyperstructure (R, +,-) is called H,-ring if (4+) and (-) are WASS, the
reproduction axiom is valid for (4) and () is weak distributive with respect to
(+), ie.

z(y+2)N(zy+2xz) # 0, (x +y)zN(zz +yz) # O,Vx,y,z € R.

For more definitions and results on H,-structures one can see in books and
papers as [2],[4],[5],[6],[7],[14],[15],[18]. An extreme class of the H,-structures is
the following: An H,-structure is called very thin iff all hopes are operations
except one, which has all hyperproducts singletons except only one, which has
cardinality more than one.

The fundamental relations 5*,v* and €* are defined, in H,-groups, H,-rings
and H,-vector spaces, respectively, as the smallest equivalences so that the
quotient would be group, ring and vector space, respectively [13],[14],[15]. The
way to find the fundamental classes is given by analogous theorems to the
following one:

Theorem 1.2. Let (H,-) be an H,-group and denote by U the set of all finite
products of elements of H. We define the relation B in H as follows: zBy
iff x,y C u where u € U. Then the fundamental relation B* is the transitive
closure of the relation (3.

Remark that the main point of the proof is that the 8 guaranties the validity
of the following: Take two elements z,y such that x,y C u € U and any
hyperproduct where one of the elements x,y, is used. Then, if this element is
replaced by the other, the new hyperproduct is inside the same fundamental
class where the first hyperproduct is. Therefore, if the 'hyperproducts’ of the
above (-classes are 'products’, then, they are fundamental classes. Analogous
remarks for the relations v and ¢, are also applied.

An element is called single if its fundamental class is a singleton.
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Let (H,-),(H,®) H,-semigroups defined on the same set H. (-) is called
smaller than (®), and (®) greater than (-), iff there exists automorphism

f € Aut(H,®) such that zy C f(z®y),Vx,y € H.

Then we write - < ® and we say that (H,®) contains the (H,-). If (H,-) is a
structure then it is called basic structure and (H,®) is called Hy-structure.

The Little Theorem. Greater hopes of hopes which are WASS or COW,
are also WASS and COW, respectively.

The fundamental relations are used for general definitions of hyperstructures.
Thus, to define the general H,-field one uses the fundamental relation v*: The
H,-ring (R,+,-) is called H,-field if the quotient R/~* is a field [13],[14].
The H,-module is an H,-group over an H,-ring if the weak distributivity and
a mixed weak associativity on all hopes, is valid. In an analogous way the
H,-vector spaces and the H,-algebra can be defined [14].

The general definition of an H,-Lie algebra was given in [16],[19] as follows:

Definition 1.3. Let (L, +) be H,-vector space over the field (F,+,),¢ : F —
F/~*, the canonical map and wp = {z € F : p(z) = 0}, where 0 is the zero of
the fundamental field F/+*. Similarly, let wy, be the core of the canonical map
¢ : L — L/e* and denote by the same symbol 0 the zero of L/e*. Consider
the bracket (commutator) hope:

[, ]:LxL— P(L):(x,y) — [z,9]

then L is an H,-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.

(A1 + Ao, y] N (Mafzr, y] + Aofaa, y]) # O

[:L‘, /\1y1+)\2y2}ﬂ()\1[x, y1}+)\2[$, yz]) 7& @, VI, x1,22,Y,Y1,Y2 € L and )\1, Ao €
F

(L2) [z,z] Nwy, #O, Yx €L

(L3) ([, [y, 2] + [y, [z, 2] + [z, [z, 9] Nwr # O, Va,y,z€ L

This is a general definition thus one can use special cases in order to face
problems in applied sciences. Moreover, we see how the weak properties can
be defined as the above weak linearity (L1), anti-commutativity (L2) and the
Jacobi identity (L3).

The wuniting elements method was introduced by Corsini-Vougiouklis [14].
With this method one puts in the same class, two or more elements. This leads
to structures satisfying additional properties. The ’enlarged’ hyperstructures
were examined in the sense that an extra element, outside the set, appears in
one result. On the other direction one can obtain H,-vector spaces, by taking
out some elements [16].
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Definition 1.4. Let (H,-) be hypergroupoid. We say that we remove h € H,
if we consider the restriction of the hope (-) on the H — {h}. We say that an
h € H absorbs h € H if we replace h, whenever it appears, by h. We say that
h € H merges with h € H, if we take as the product of any h € H by h, the
union of the results of x with both h and h, and we consider A and h as one
class, with representative h.

The representation problem of H,-structures by H,-matrices is the following
[14]):
H,-matriz is a matrix with entries of an H,-ring or H,-field. The hyper-

product of two H,-matrices A = (a;;) and B = (b;;), of type m x n and n x r,
respectively, is defined in the usual manner but it is a set of m x r H,-matrices:

AB = (a;).(bij) = {C = (cij)lcij € @Y ambi;},
where (@) denotes the n-ary circle hope on the hyperaddition, i.e. the sum of

products of elements of the H,-ring is the union of the sets obtained with all
possible parentheses put on them. The hyperproduct is not WASS.

Definition 1.5. Let (H, -) be H,-group, consider an H,-ring or H,-field, (R, +, )
and a set
Mpr = {(ai;)|ai; € R},

then is called H,-matrix representation, any map
T:H — Mg,h — T(h) such that T(h1ha)NT(h1)T(ha) # O,Yhy,he € H,
If T(hiha) C T(h1)T(h2),Yhi,he € H, then T is an inclusion representation,
if

T(hlhg) = T(hl)T(hg) = {T(h)‘h S hlhg},Vhl, ho € H,

then T is a good representation.
The main theorem of the theory of representations is:

Theorem 1.6. A necessary condition in order to have an inclusion represen-
tation T of the H,-group (H,-) by n x n H,-matrices over the H,-ring (R, 4+, )
is the following:

For all classes B*(a),a € H there must exist elements a;; € R,i,j € {1,...,n}
such that

T(6*(a)) C {A = (aj;)lai; € v (aij), 1,5 € {1,....,n}}.
2. LIE-SANTILLI ADDMISIBILITY

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems [9]. Santilli proposed a ’lifting’of the n-dimensional triv-
ial unit matrix of a normal theory into a nowhere singular, symmetric, real-
valued, positive-defined, n-dimensional new matrix. The original theory is
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reconstructed such as to admit the new matrix as left and right unit. The
isofields needed in this theory correspond to e-hyperfields which are the hyper-
structures introduced by Santilli and Vougiouklis 1996 [10]. The H,-fields can
give e-hyperfields which can be used in the isotopy theory in applications as in
physics or in biology. The main definitions and constructions are presented on
the H,-structures. They are based on the partial order in H,-structures and
the Little Theorem [3],[4],[10],[19].

Definition 2.1. A hyperstructure (H,-) which contain a unique scalar unit e,
is called e-hyperstructure. In an e-hyperstructure, we normally assume that for
every element x, there exists an inverse element, not necessarily unique, =1,

ie.ecxaztneta.

A hyperstructure (F,+,-), where (+) is operation and (-) is hope, is called
e-hyperfield if the following axioms are valid:

1. (F,+) is an abelian group with the additive unit 0,

2. (-) is WASS,

3. (+) is weak distributive with respect to (+),

4. 0 is absorbing: 0.z = 2.0 =0,Vx € F,

5. there exists a multiplicative scalar unit 1, i.e. l.x = 2z.1 = x,Vz € F,

6. for every non zero x € F there exists a unique inverse !, such that
lexatnazto

The elements of an e-hyperfield are called e-hypernumbers. In the case that
the relation: 1 = z.x~! !
e-hyperfield.

=z~ .z, is valid, then we say that we have a strong

Main e-Construction. Given a group (G, .), where e is the unit, then we
define in G, an extremelly large number of hopes (®) as follows:

x@y = {ij7gl’gz, }7Vx,y S G — {6}7 and 91,92, --- € G- {6}7

J1,92, ... are not the same for each (z,y). (G,®) becomes H,-group, in fact an
Hp-group containing the (G,.). The (G,®) is an e-hypergroup. Moreover, if
for each x,y such that xy = e, so we have x ® y = xy, then (G, ®) becomes a
strong e-hypergroup.

The proof is immediate. Moreover e is a unique scalar and for each x in G,
there exists a unique inverse = !, such that 1 € xz.27' N2~ .z and then we
have 1 = z.27! = 27 1.2. So the (G, ®) is a strong e-hypergroup.

The above main e-construction gives an extremely large class of e-hopes but
the most useful are the ones where only few products are enlarged.
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Example of an e-hypergroup. Consider the non-commutative quaternion
group
Q={1,-1,i,—1i,5,—j, k,—k}
One can obtain several hopes which define e-hypergroups. For example, denote
i={i,—i},j={j,—it, k={k —k}
then we may define the (%) hope by the table:

G013 1 k|-k|1]-1|-4]1
k| k|k|if|-j|-i]i]-1]1
ki-k| k| -ifjli]-i]1]-1

(Q, *) is strong e-hypergroup since 1 is scalar and —1,4, —i,j, —j, k and —k
have unique inverses —1, —t,%, —j, j, —k and k, respectively, which are the in-
verses in the basic group.

A general way to define hopes, from given operations [12],[14] is the following:

Definition 2.2. Let (G,.) be a groupoid, then for every set P C G, P # O,
we define the following hopes called P-hopes:
P:aPy = (zP)yUx(Py),
P, :xP.y=(zy)PUz(yP),P, : 2Py = (Px)y U P(zy),Ya,y € G
The (G, P), (G, P,) and (G, P;) are called P-hyperstructures. If (G, .) is semi-
group, then (G, P) is a semihypergroup but we do not know for (G, P,.), (G, P;).
In some cases, mainly depending on the choice of P, the (G, P,.), (G, P,) can

be associative or WASS. If in G, more operations are defined then for each
operation several P-hopes can be defined.

In [2],[3] a P-hope was introduced which is appropriate for e-hyperstructures:

Construction. Let (G,.) be abelian group and P C G, with more than one
elements. We define a hope (xp) as follows:

Xy — x.Py={zhylhe P} x#e and y#e
PY= .y r=e or y=e

we call this P.-hope. The hyperstructure (G, X p) is an abelian H,-group.

Now we define a hope on non square matrices [13],[14],[17]:
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Definition 2.3. Let M = M,,,«,, be a module of m x n matrices over R and
P={P:iel} CM.
We define, a kind of, a P-hope, P on M as follows:

P:-MxM-—P(M): (A B) — APB={AP!B:icI} CM
where P! denotes the transpose of the matrix P.

The hope P, which is a bilinear map, is a generalization of Rees’ operation
where, instead of one sandwich matrix, a set of sandwich matrices is used. P
is associative and the inclusion distributivity law with respect to addition of
matrices is valid:

AP(B+C) C APB+ APC,YA,B,C € M

Therefore, (M, +, P) defines a multiplicative hyperring, i.e. only the multipli-
cation is a hope, on non-square matrices.

Definition 2.4. Let M = M,,,«,, be module of m X n matrices over a ring
R and let take sets S = {s;, : k € K} C R Q={Q; :j € J} CM and
P ={P,:i eI} CM. Define three hopes as follows

S:RxM—PM): (r,A) — rSA={(rsp)A: ke K} CM

Q. :MxM-—P(M):(4,B) — AQ,B={A+Q;+B:jcJ}CM

P:-MxM-—P(M): (A B) — APB={AP!B:ic I} CM
Then (M, S, Q4+, P) is the general matriz P-hyperalgebra over R.

In a similar way a generalization of this can be defined if one consider an H,,-
ring or an H,-field instead of a ring and using H,-matrices instead of matrices.

Let A = (ai;), B = (bij) € Myxn, we call (A, B) a unitize pair of matrices
if A'B = I,,, where I,, denotes the n X n unit matrix. We prove the following
theorem which can be applied in the classical theory as well [19].

Theorem 2.5. Proof. If m < n, then there is no unitize pair. Suppose that
m

A'B = (¢;j), that is ¢;j = Y a;bkj, and we denote by A, the block of the
k=1
matrix A such that A,, = (a;ij) € My, xm, i.e. we consider the matrix of the

first m columns. Then we suppose that we have (A,,)!B,, = I,,, thus we must
have det(A,,) # 0.

Now, since n > m, we take the homogeneous system with respect to the
‘unknowns’ b1, b2n, ..., binn -

m
Cin = E aiben =0 for i =1,2,....,m.
k=1
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From which, since det(A,,) # 0, we obtain that by, = ba, = ... = by, = 0.

m

Using this fact on the last equation, on the same unknowns, ¢, = . anibpn =
k=1

1 we have 0 = 1, absurd. O

Now we deal with the Lie-Santilli admissibility [8],[9],[11],[19] on the non-
square case. This problem can be faced in two ways:

(a) using ordinary numbers, as real or complex numbers, so using ordinary
matrices and hopes, instead of operations on non-square matrices,

(b) using hypernumbers (e-hypernumbers) as entries and the ordinary oper-
ations on non-square hypermatrices.

The general construction is the following:

Construction Let (L = M,,xn,+) be an H,-vector space of m x n hyper-
matrices over the H,-field (F,+,-), ¢ : F — F/~*, the canonical map and
wp = {x € F: p(x) = 0}, where 0 is the zero of the fundamental field F/~*.
Moreover, let wy, be the core of the canonical map ¢’ : L — L/e* and denote
by the same symbol 0 the zero of L/e*. Take two subsets R,S C L then a
Santilli’s Lie-admissible hyperalgebra is obtained by taking the Lie bracket,
which is a hope:

[, Jrs:LxL— P(L): [z,y]rs = 2R"y — yS'x.
More precisely,
[z,y]rs = zR'y — yS'z = {arly — ys'z|r € R,s € S}

Special case, but not degenerate, is for R = {ry,r2} and S = {s1, s2}, even
more if R=5 = P = {Py, P>} then we have

[z,y]p = P'y—yP's = {x Ply—yP{z,xPly—yPsx,xPyy—yPlz,x Pyy—yPx}

In the applications the most interesting cases are the ones which have results
with small number of elements. Therefore, we need new types of matrices, with
more properties especially for the matrices used in the set P of the P-hopes.
Thus we introduce the following:

Definition 2.6. An m x n matrix over an associative ring with identity 1, is
called monomial-like matriz, if in each row and column there are at least
one non-zero element. We assume that the number of the non-zero entries is
the minimum needed. If the non-zero entries of a monomial-like matrix are
equal to 1, then the matrix is called a permutation-like matriz.

Remark 2.7. In the following, we restrict ourselves on the type of permutation-
like matrices P € M, xn, With m < n, where the first part m x m block, is
the unit matrix I,,. The rest cases are analogous. For example, in the case of
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P € Msxs, we have only the case P = {P;, P»}, where

10 1 100
P1<0 1 0>’ PQ(O 1 1>

Property Consider the permutation-like matrix P € M,,, xn, with m < n, then
we could have more than one 15 only in some lines. Therefore, when we mul-
tiply with a matrix A = (aij) € My xn, we have the following cases

1. The matrix PA?, has some rows the same as in A?, but maybe in other
position, or some rows have as entries sums of elements of two or more corre-
sponding rows of the matrix A?.

2. In the matrix P'A, there are repetitions of some rows of the matrix A
and maybe in different positions.

3. The matrix AP!, has some columns the same as in A!, but maybe in
other position, or some columns have as entries sums of elements of two or
more corresponding columns of the matrix A?.

4. In the matrix A*P, there are repetitions of some columns of the matrix
A and maybe in different positions.

An interesting problem is to find the set of matrices which are unitize pair with
a given matrix.

EXAMPLE 2.8. The set of the matrices which are unitize pair with the transpose
of the permutation-like matrices P} and P? , given in the above Remark 2.7,
are, respectively,

k 0 11—k 1 kK -k
X == X =
! <>\1 —A ) ? (O)\l—)\>
since we can see that XlPt1 =I5 and XgPt2 = I.

EXAMPLE 2.9. In the set M3, we take as P = {Py, P2}, from above Remark
2.7 Consider the four dimensional matrices

X:<CU1 0 962>’ Y:(yl 0 y2>
0 =3 x4 0 Y3 wa

Then we obtain, after calculations, that the P—Lie bracket of them is
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[X,Y]p=XP'Y-YP'X = {( Tay1 —r1y2 0 T1Y2 — Toyi

T4y1 —T1Ys 0 Tayo + T3ys — Tays — Tay3

( ToY1 —T3Y2 T1Y2 + TaY2 — TaY1 — Tal2
T4Y1 —T3Ys TaY2 + T3Ys — T4Ys — Tal4
( —T1Y2 T2Y3 T1Y2 + TaYs — Tay1 — T2Y2

—T1Y4 T4Y3 T3Y4 + TaY4 — T2Ys — T4Y3

0 m4y3 — w3Y4 T3Ys — T4Y3

( 0 moys —x3y2 T1y2 + Toys — Tay1 — Tayo >}

Notice that we always have 0ax3 € [X, X]p, for all X € Mays.

Open problem: Find closed sets of matrices with respect to the P-Lie brack-

ets.
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