

z_R -Ideals and z_R° -Ideals in Subrings of \mathbb{R}^X

Ali Rezaei Aliabad and Mehdi Parsinia*

Department of Mathematics, Shahid Chamran University of Ahvaz,
Ahvaz, Iran.

E-mail: aliabady_r@scu.ac.ir

E-mail: parsiniamehdi@gmail.com

ABSTRACT. Let X be a topological space and R be a subring of \mathbb{R}^X . By determining some special topologies on X associated with the subring R , characterizations of maximal fixed and maximal g -ideals in R of the form $M_x(R)$ are given. Moreover, the classes of z_R -ideals and z_R° -ideals are introduced in R which are topological generalizations of z -ideals and z° -ideals of $C(X)$, respectively. Various characterizations of these ideals are established. Also, coincidence of z_R -ideals with z -ideals and z_R° -ideals with z° -ideals in R are investigated. It turns out that some fundamental statements in the context of $C(X)$ are extended to the subrings of \mathbb{R}^X .

Keywords: $Z(R)$ -topology, $Coz(R)$ -topology, g -ideal, z_R -ideal, z_R° -ideal, invertible subring.

2010 Mathematics subject classification: 54C30, 46E25.

1. INTRODUCTION

For a topological space X , \mathbb{R}^X denotes the algebra of all real-valued functions and $C(X)$ (resp., $C^*(X)$) denotes the subalgebra of \mathbb{R}^X consisting of all continuous functions (resp., bounded continuous functions). Moreover, we use R to denote a unital subring of \mathbb{R}^X . Note that topological spaces which are considered in this paper are not necessarily Tychonoff. For each $f \in \mathbb{R}^X$,

*Corresponding Author

$Z(f) = \{x \in X : f(x) = 0\}$ denotes the zero-set of f and $Coz(f)$ denotes the complement of $Z(f)$ with respect to X . We denote by $Z(R)$ the collection of all the zero-sets of elements of R , we use $Z(X)$ instead of $Z(C(X))$. We denote by $M_x(R)$ the set $\{f \in R : x \in Z(f)\}$, $M_x(C(X))$ is denoted by M_x . The subring R is called invertible, if $f \in R$ and $Z(f) = \emptyset$ implies that f is invertible in R . Moreover, R is called a lattice-ordered subring if it is a sublattice of \mathbb{R}^X (i.e., $f \wedge g$ and $f \vee g$ are in R for each $f, g \in R$). It is clear that $C(X)$ is an invertible lattice-ordered subring of \mathbb{R}^X . However, the same statement does not hold for $C^*(X)$. A proper ideal I of R is called a growing ideal, briefly, a g -ideal, if contains no invertible element of \mathbb{R}^X , i.e., $Z(f) \neq \emptyset$ for each $f \in I$. It is evident that a subring R is invertible if and only if every ideal every ideal of R is a g -ideal. Clearly, M^{*p} , for each $p \in \beta X \setminus vX$, is not a g -ideal of $C^*(X)$. An ideal I of R is called fixed if $\bigcap_{f \in I} Z(f) \neq \emptyset$, otherwise, it is called free. By a maximal fixed ideal of R , we mean a fixed ideal which is maximal in the set of all fixed ideals of R . An ideal I in a commutative ring S is called a z -ideal (resp., z° -ideal) if $M_a(S) \subseteq I$ (resp., $P_a(S) \subseteq I$), for each $a \in I$, where $M_a(S)$ (resp., $P_a(S)$) denotes the intersection of all the maximal (resp., minimal prime) ideals of S containing a . It is well-known that in $C(X)$ an ideal I is a z -ideal (resp., z° -ideal) if and only if whenever $Z(f) \subseteq Z(g)$ (resp., $\text{int}_X Z(f) \subseteq \text{int}_X Z(g)$), $f \in I$ and $g \in C(X)$, then $g \in I$.

This paper consists of 4 sections. Section 1, as we have already noticed, is the introduction, in which we determine two special topologies on X which the subring R generate, namely, $Z(R)$ -topology and $Coz(R)$ -topology. Comparison and coincidence of these topologies are studied. Section 2 deals with maximal ideals in R , specially, maximal fixed and maximal g -ideals. Using the $Z(R)$ -topology, characterizations of maximal fixed ideals of R , which are of the form $M_x(R)$, are given. Moreover, relations between mapping “ $x \rightarrow M_x(R)$ ” and the separation properties of the topological space $(X, \tau_{Z(R)})$ will be found. In section 3, we introduce the notion of z_R -ideal in a subring R as a natural topological generalization of the notion of z -ideal in $C(X)$. Various characterizations of these ideals via $Z(R)$ -topology are given and relations between z_R -ideals and z -ideals in R (by their algebraic descriptions) are discussed. Section 4 deals with z_R° -ideals of R which are natural topological generalizations of z° -ideals of $C(X)$. Using $Coz(R)$ -topology, coincidence of z_R° -ideals with z° -ideals of R (by their algebraic descriptions) are established.

Definition 1.1. For each subring R of \mathbb{R}^X , clearly, $Z(R)$ and $Coz(R)$ constitute bases for some topologies on X . The induced topologies are called $Z(R)$ -topology and $Coz(R)$ -topology, respectively, and are denoted by $\tau_{Z(R)}$ and $\tau_{Coz(R)}$, respectively.

In the next three statements we compare these topologies. Note that two subsets S_1, S_2 of \mathbb{R}^X are called zero-set equivalent, if $Z(S_1) = Z(S_2)$.

Proposition 1.2. *Let R be a subring of \mathbb{R}^X , if S and $C(\mathbb{R})$ are zero-set equivalent subsets of $\mathbb{R}^{\mathbb{R}}$ and $gof \in R$ for each $f \in R$ and each $g \in S$, then $\tau_{Coz(R)} \subseteq \tau_{Z(R)}$ and the equality does not hold, in general.*

Proof. We are to show that $Coz(R) \subseteq \tau_{Z(R)}$. If $x \notin Z(f)$ where $f \in R$, then there is a g in S such that $f(x) \in Z(g)$ and $f^{-1}(Z(g)) \cap Z(f) = \emptyset$. Therefore, $gof \in R$, $x \in Z(gof)$ and $Z(gof) \cap Z(f) = \emptyset$ which proves the inclusion. Now, we show that the inclusion may be proper. Let (X, τ_X) be a Tychonoff space which has at least one non-open zero-set Z . Set $R = C(X)$, then $\tau_{Coz(R)} = \tau_X$, whereas $Z \notin \tau_X$ and hence, $\tau_{Coz(R)} \subsetneq \tau_{Z(R)}$. \square

Proof of the following proposition is standard.

Proposition 1.3. *The following statements are equivalent.*

- (a) $\tau_{Coz(R)} \subseteq \tau_{Z(R)}$.
- (b) *Every $Z \in Z(R)$ is clopen under $Z(R)$ -topology.*

The annihilator of $f \in R$ in R is defined to be the set $\{g \in R : fg = 0\}$ and is denoted by $Ann_R(f)$. A simple reasoning shows that if X is equipped with the $Coz(R)$ -topology, then $Ann_R(f) = \{g \in R : Coz(g) \subseteq \text{int}_X Z(f)\} = \{g \in R : \text{cl}_X(Coz(g)) \subseteq Z(f)\}$.

Proposition 1.4. *The following statements are equivalent.*

- (a) $\tau_{Z(R)} \subseteq \tau_{Coz(R)}$.
- (b) *$Z(f)$ is clopen in $(X, \tau_{Coz(R)})$ for every $f \in R$.*
- (c) *For each $f \in R$, $Z(f) = \bigcup_{g \in Ann_R(f)} Coz(g)$.*
- (d) *For each $f \in R$, $(Ann_R(f), f)$ is a free ideal.*

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) are clear.

(c) \Rightarrow (d). This is clear by the hypothesis and the fact that whenever $f \in R$ and I is an ideal of R , then $\bigcap_{h \in (I, f)} Z(h) = \bigcap_{g \in I} (Z(f) \cap Z(g))$.

(d) \Rightarrow (a). Let $f \in R$ and $x \in Z(f)$. By (d), there exists $g \in Ann_R(f)$ such that $x \notin Z(f) \cap Z(g)$. Hence, $x \notin Z(g)$ and $x \in Coz(g) \subseteq Z(f)$ and so $Z(f) \in \tau_{Coz(R)}$. \square

An immediate consequence of Propositions 1.3 and 1.4 is that $\tau_{Coz(R)} = \tau_{Z(R)}$ if and only if $Z(f)$ is clopen under both $Z(R)$ -topology and $Coz(R)$ -topology, for each $f \in R$.

2. CHARACTERIZATION OF MAXIMAL FIXED IDEALS IN SUBRINGS

We remind that maximal fixed ideals of $C(X)$ coincide with its fixed maximal ideals and are of the form $M_x = \{f \in C(X) : f(x) = 0\}$, where $x \in X$. This fact is generalized for some special subalgebras of $C(X)$, such as intermediate subalgebras (subalgebras of $C(X)$ containing $C^*(X)$, see [7]), $C_c(X)$ (the subalgebra of $C(X)$ consisting of all functions with countable image, see [9]) and the subalgebras of the form $\mathbb{R} + I$ where I is an ideal of $C(X)$, see [13].

We will show that the same statement does not hold for arbitrary subrings of \mathbb{R}^X , in general.

Remark 2.1. (a) Every maximal fixed ideal and fixed maximal ideal of R is of the form $M_x(R) = \{f \in R : f(x) = 0\}$ for some $x \in X$. However, parts (1) and (2) of Example 2.2 show that the ideals $M_x(R)$ are not necessarily maximal ideals or even maximal fixed ideals in R .

(b) Every fixed maximal ideal is both a maximal fixed ideal and a maximal g -ideal. But the converse is not necessarily true, in general, see part (1) of Example 2.2 and Example 2.3.

(c) A maximal fixed ideal need not be a maximal g -ideal, see Example 2.3.

(d) Every fixed maximal g -ideal is a maximal fixed ideal.

EXAMPLE 2.2. (1) Let X be a Tychonoff space, $x \in X$ and $R = \mathbb{Z} + M_x$. Then $M_x(R) = M_x$ is not a maximal ideal in R , since $2\mathbb{Z} + M_x$ is a proper ideal of R and $M_x \subsetneq 2\mathbb{Z} + M_x$. Therefore, $M_x(R)$ is a maximal fixed ideal and a maximal g -ideal which is not a maximal ideal.

(2) Let X be a topological space with more than one point and $a \in X$. Also, let $t \in \mathbb{R}$ be a transcendental number and define $f : X \rightarrow \mathbb{R}$ by $f(a) = 0$ and $f(x) = t$, for every $x \neq a$. Set $R = \{\sum_{i=0}^n m_i f^i : n \in \mathbb{N} \cup \{0\}, m_i \in \mathbb{Z}\}$. Evidently, $M_a(R) = (f)$ and $M_x(R) = \{0\}$, for every $x \neq a$. Therefore, $M_x(R)$ is not a maximal fixed ideal for any $x \neq a$.

In the next example we construct a subring R such that, for some $x \in X$, $M_x(R)$ is a maximal fixed ideal which is not a maximal g -ideal.

EXAMPLE 2.3. Let $X = \mathbb{R}$, $a \in \mathbb{R} \setminus \mathbb{Q}$, $b \in \mathbb{R} \setminus \{0\}$ and t be a transcendental number. For every $\epsilon > 0$, define $f_\epsilon : X \rightarrow \mathbb{R}$ by $f_\epsilon(x) = 0$, if $|x - a| < \epsilon$ and $f_\epsilon(x) = b$, if $|x - a| \geq \epsilon$. Also, define $f : X \rightarrow \mathbb{R}$ by $f(x) = 0$, if $x \in \mathbb{Q}$ and $f(x) = t$, if $x \in \mathbb{R} \setminus \mathbb{Q}$. Let R be the algebra over \mathbb{Q} generated by $\{f_\epsilon : \epsilon > 0\} \cup \{f, 1\}$. Evidently, R is a subring of \mathbb{R}^X , and $M_a(R)$ equals to (f_a) which is not a maximal ideal. It is easy to see that $M_a(R)$ is a maximal fixed ideal and $M_a(R) = I$, where I is the ideal generated by $\{f_\epsilon : \epsilon > 0\}$. Clearly, $Z(f) \cap Z(g) \neq \emptyset$, for all $g \in I$. Hence $J = (I, f)$ is a g -ideal which strictly contains I . Therefore, I is not a maximal g -ideal.

Proposition 2.4. *The following statements hold for a subring R of \mathbb{R}^X .*

(a) $M_x(R)$ is a maximal g -ideal if and only if whenever $Z \in Z(R)$ and $x \notin Z$, then $x \notin cl_{\tau_{Z(R)}} Z$.

(b) For each $x \in X$, $M_x(R)$ is a maximal g -ideal if and only if every $Z \in Z(R)$ is clopen under $Z(R)$ -topology.

Proof. (a \Rightarrow). Let $f \in R$ and $x \notin Z(f)$, thus, the ideal $(M_x(R), f)$ contains an invertible element of \mathbb{R}^X . Hence, there are $g \in M_x(R)$ and $h \in R$ such that $Z(g + fh) = \emptyset$. Consequently, $x \in Z(g)$ and $Z(f) \cap Z(g) = \emptyset$.

(a \Leftarrow). Assume that $f \notin M_x(R)$. Then there is some $g \in R$ such that $x \in Z(g)$ and $Z(f) \cap Z(g) = Z(f^2 + g^2) = \emptyset$. Hence, $(M_x(R), f)$ contains an invertible element of \mathbb{R}^X . Also, clearly, $M_x(R)$ is a g -ideal. Thus, $M_x(R)$ is a maximal g -ideal.

(b). An easy consequence of (a). \square

Corollary 2.5. *If $M_x(R)$ is a maximal ideal for each $x \in X$, then every $Z \in Z(R)$ is clopen under $Z(R)$ -topology.*

Corollary 2.6. *Let R be an invertible subring. Then every $Z \in Z(R)$ is clopen under $Z(R)$ -topology if and only if $M_x(R)$ is a maximal ideal for each $x \in X$.*

Proof. By our hypothesis and Proposition 2.4, this is clear. \square

The following lemma is a restatement of the fact that the transcendental degree of \mathbb{R} over \mathbb{Q} is uncountable, see [14].

Lemma 2.7. *Let $S = \mathbb{Q}[y_1, \dots, y_n]$ be the ring of n -variable polynomials with rational coefficients. Then there exists an uncountable set X of transcendental numbers for which $F(a_1, \dots, a_n) \neq 0$, for every distinct elements a_1, \dots, a_n of X and every $F \in S$.*

The following example shows that the converse of Corollary 2.5 does not hold, in general.

EXAMPLE 2.8. Let S be the polynomial ring $\mathbb{Q}[y_1, \dots, y_n]$, where $n \in \mathbb{N}$ and $n > 1$. By Lemma 2.7, there exists an infinite set of transcendental numbers X for which $F(a_1, \dots, a_n) \neq 0$, for every $a_1, \dots, a_n \in X$ and every $F \in S$. For each $a \in X$, define the function $f_a : X \longrightarrow \mathbb{R}$ by $f_a(a) = 0$ and $f_a(x) = x$ for each $x \neq a$. Now, set

$$R = \{F(f_{a_1}, \dots, f_{a_n}) : F \in S, n \in \mathbb{N}, a_1, \dots, a_n \in X\}.$$

Hence, $M_a(R) = (f_a)$, for each $a \in X$, which is not a maximal ideal. However, every $Z \in Z(R)$ is clopen under $Z(R)$ -topology.

Proposition 2.9. *If R is a subalgebra of \mathbb{R}^X , then $M_x(R)$ is a maximal g -ideal and a maximal fixed ideal for every $x \in X$.*

Proof. It suffices to prove that every element of $Z(R)$ is closed under $Z(R)$ -topology. To this aim, suppose that $a \in X$ and $a \notin Z(f)$, for some $f \in R$. Put $g = f - f(a)$. Clearly, $Z(g) \in Z(R)$, $a \in Z(g)$ and $Z(g) \cap Z(f) = \emptyset$. \square

Corollary 2.10. *If R is an invertible subalgebra of \mathbb{R}^X , then $M_x(R)$ is a maximal ideal for each $x \in X$.*

The converse of Corollary 2.10 does not hold, in general. For example, let R denote the collection of all single variable polynomials over \mathbb{R} . Then, $M_r(R)$ is the maximal ideal $(x - r)$ for each $r \in \mathbb{R}$. However, $f = x^2 + 1$ is invertible in

$\mathbb{R}^{\mathbb{R}}$ which is not invertible in R . Note that the subalgebras $C_c(X)$ and $\mathbb{R} + I$, for each ideal I in $C(X)$, satisfy Corollary 2.10 and so $M_x(C_c(X))$ and $M_x(\mathbb{R} + I)$ are maximal ideals of $C_c(X)$ and $\mathbb{R} + I$, respectively, for each $x \in X$. Remark that in parts (b) and (e) of the following proposition we assume that “=” is a partial order on X .

Proposition 2.11. *For a subring R of \mathbb{R}^X , the following statements hold.*

- (a) *The mapping $x \rightarrow M_x(R)$ is a one-one correspondence if and only if $(X, \tau_{Z(R)})$ is a T_0 -space.*
- (b) *The mapping $x \rightarrow M_x(R)$ is an order isomorphism between X and the set of all maximal fixed ideals of R if and only if $(X, \tau_{Z(R)})$ is a T_1 -space.*
- (c) *For every two distinct elements $x, y \in X$, $M_x(R) + M_y(R)$ is not a g -ideal if and only if $(X, \tau_{Z(R)})$ is a T_2 -space.*
- (d) *The mapping $x \rightarrow M_x(R)$ is an order embedding between X and the set of all maximal g -ideals of R if and only if $(X, \tau_{Z(R)})$ is a T_0 -space and every element of $Z(R)$ is clopen under $Z(R)$ -topology.*

Proof. (a). Let x, y be distinct points of X , so $M_x(R) \neq M_y(R)$, say $M_x(R) \not\subseteq M_y(R)$. Hence, there exists $f \in M_x(R) \setminus M_y(R)$. Thus $x \in Z(f)$ and $y \notin Z(f)$. It is clear that the above reasoning is reversible and hence we are done.

(b \Rightarrow). Suppose that x and y are two distinct points of X . Since $M_x(R) \not\subseteq M_y(R)$, there exists $f \in M_x(R) \setminus M_y(R)$. Consequently, $x \in Z(f)$ and $y \notin Z(f)$.

(b \Leftarrow). Suppose that $x \in X$ and I is a fixed ideal in R containing $M_x(R)$. Take $y \in \cap_{f \in I} Z(f)$. Clearly, $M_x(R) \subseteq I \subseteq M_y(R)$. It suffices to show $x = y$. Suppose that $x \neq y$ and seek a contradiction. By our hypothesis, there exists $f \in R$ such that $x \in Z(f)$ and $y \notin Z(f)$. Therefore, $M_x(R) \not\subseteq M_y(R)$ and this is a contradiction. Now, by part (a), the proof is complete.

(c). For any two distinct points $x, y \in X$, clearly, $M_x(R) + M_y(R)$ is not a g -ideal if and only if there exist $f \in M_x(R)$ and $g \in M_y(R)$ such that $Z(f) \cap Z(g) = \emptyset$.

(d \Rightarrow). By part (a), clearly, $(X, \tau_{Z(R)})$ is a T_0 -space. Now, Suppose that $f \in R$ and $x \notin Z(f)$. Since $M_x(R)$ is a maximal g -ideal, it follows that $(M_x(R), f)$ has an invertible element of \mathbb{R}^X and so there exists $g \in M_x(R)$, such that $Z(g) \cap Z(f) = \emptyset$. Thus, $Z(f)$ is closed and hence is clopen under $Z(R)$ -topology.

(d \Leftarrow). Suppose that $x \in X$, it suffices to show that $M_x(R)$ is a maximal g -ideal. Assume that I is an ideal which properly contains $M_x(R)$. Hence, there exists $f \in I$ such that $x \notin Z(f)$. By our hypothesis, there is $g \in R$ such that $x \in Z(g)$ and $Z(g) \cap Z(f) = \emptyset$. Therefore, $Z(f^2 + g^2) = \emptyset$ and $f^2 + g^2 \in I$, hence, I is not a g -ideal. \square

It is easy to see that $M_x(R)$, for each $x \in X$, is a prime ideal of R and thus the hull-kernel topology may be defined on the family $\{M_x(R) : x \in X\}$.

By considering this space, the next statement gives a relation between $Z(R)$ -topology on X and points of X .

Proposition 2.12. *Let R be a subring of \mathbb{R}^X and X equipped with the $Coz(R)$ -topology. Then the mapping $\Phi : X \rightarrow \{M_x(R) : x \in X\}$ defined by $x \mapsto M_x(R)$ is a homeomorphism if and only if $(X, \tau_{Z(R)})$ is a T_0 -space.*

Proof. By part (a) of Theorem 2.12, Φ is a one-one correspondence if and only if $(X, \tau_{Z(R)})$ is a T_0 -space. Also, if $f \in R$ and $x \in Z(f)$, then $f \in M_x(R)$ which means that basic closed sets of X equipped with the $Coz(R)$ -topology are mapped to the basic closed sets in $\{M_x(R) : x \in X\}$ equipped with the hull-kernel topology by the mapping Φ and therefore, it is a homeomorphism. \square

3. z_R -IDEALS AND z -IDEALS IN SUBRINGS

In this section we introduce z_R -ideals in a subring R and via the $Z(R)$ -topology and maximal g -ideals of R , various characterizations of these ideals are given.

Definition 3.1. A subset \mathcal{F} of $Z(R)$ is called z_R -filter on X , if

- (a) $\emptyset \notin \mathcal{F}$.
- (b) If $Z_1, Z_2 \in \mathcal{F}$, then $Z_1 \cap Z_2 \in \mathcal{F}$.
- (c) If $Z_1 \in \mathcal{F}$, $Z_2 \in Z(R)$ and $Z_1 \subseteq Z_2$, then $Z_2 \in \mathcal{F}$.

Moreover, \mathcal{F} is called a prime z_R -filter, if whenever $Z_1 \cup Z_2 \in \mathcal{F}$, then $Z_1 \in \mathcal{F}$ or $Z_2 \in \mathcal{F}$ for each $Z_1, Z_2 \in Z(R)$. Also, \mathcal{F} is called a z_R -ultrafilter, if \mathcal{F} is maximal among z_R -filters on X .

The following proposition immediately follows from Definition 3.1.

Proposition 3.2. *For any subring R , the following statements hold.*

- (a) $I \subseteq R$ is a g -ideal in R if and only if $Z_R(I) = \{Z(f) : f \in I\}$ is a z_R -filter on X .
- (b) \mathcal{F} is a z_R -filter on X if and only if $Z_R^{-1}(\mathcal{F}) = \{f \in R : Z(f) \in \mathcal{F}\}$ is a g -ideal.
- (c) \mathcal{F} is a prime z_R -filter on X if and only if $Z_R^{-1}(\mathcal{F})$ is a prime g -ideal.
- (d) \mathcal{A} is a z_R -ultrafilter on X if and only if $Z_R^{-1}(\mathcal{A})$ is a maximal g -ideal.
- (e) If M is a maximal g -ideal in R , then $Z_R(M)$ is a z_R -ultrafilter on X .

It is easy to see that for an ideal I of R we always have $I \subseteq Z_R^{-1}Z_R(I)$ and the inclusion may be proper. We call an ideal I in R a z_R -ideal, if $I = Z_R^{-1}Z_R(I)$. It follows that every z_R -ideal is semiprime and arbitrary intersections of z_R -ideals is a z_R -ideal. Also, the zero ideal, the ideals of the form $M_x(R)$, maximal g -ideals and $Z^{-1}(\mathcal{F})$, for each z_R -filter \mathcal{F} , are all z_R -ideals of R . For each $f \in R$, the intersection of all the maximal ideals, maximal g -ideals and maximal fixed ideals of R containing f are denoted by $M_f(R)$, $MG_f(R)$ and $MF_f(R)$, respectively. It is easy to observe that $MG_f(R)$ is a z_R -ideal for each $f \in R$.

Obviously, $MG_f \cap MG_g = MG_{fg}$, $MF_f \cap MF_g = MF_{fg}$, $MG_{f^2+g^2} = MG_{(f,g)}$ and $MF_{f^2+g^2} = MF_{(f,g)}$ for all $f, g \in R$.

Proposition 3.3. *Let $(X, \tau_{Z(R)})$ be a T_1 -space. Then the following statements hold.*

- (a) *The following statements are equivalent.*
 - (1) $g \in MF_f(R)$.
 - (2) $MF_g(R) \subseteq MF_f(R)$.
 - (3) $Z(f) \subseteq Z(g)$.
- (b) $MF_f(R) = \{g \in R : Z(f) \subseteq Z(g)\}$.
- (c) *An ideal I of R is a z_R -ideal if and only if $MF_f(R) \subseteq I$ for every $f \in I$.*

Proof. (a: 1 \Rightarrow 2). Evident.

(a: 2 \Rightarrow 3). Let $x \in Z(f)$. Then $f \in M_x(R)$ and thus $MF_g(R) \subseteq MF_f(R) \subseteq M_x(R)$. This implies $g \in M_x(R)$ and hence $x \in Z(g)$.

(a: 3 \Rightarrow 1). If $g \notin MF_f(R)$, then there exists $x \in X$ such that $f \in M_x(R)$ and $g \notin M_x(R)$. Therefore, $x \in Z(f) \setminus Z(g)$ and so $Z(f) \subsetneq Z(g)$.

(b) and (c) obviously follow from part (a). \square

Lemma 3.4. *Assume that every $Z \in Z(R)$ is clopen under $Z(R)$ -topology. Then $MG_f(R) = MF_f(R)$, for every $f \in R$.*

Proof. Suppose that $f \in R$. By part (b) of Proposition 2.4, $M_x(R)$ is a maximal g -ideal for each $x \in X$. Consequently, $MG_f(R) \subseteq MF_f(R)$. Now, assume that $g \notin MG_f(R)$. Hence, there exists a maximal g -ideal M in R such that $f \in M$ and $g \notin M$. Thus, there exists $h \in M$ such that $Z(g) \cap Z(h) = \emptyset$. Since $f^2 + h^2 \in M$ and M is a g -ideal, there is a point $x \in Z(f^2 + h^2) = Z(f) \cap Z(h)$. Clearly, $g \notin M_x(R)$ and $f \in M_x(R)$. Therefore, $g \notin MF_f(R)$. \square

Proposition 3.3 and Lemma 3.4 imply the next statement.

Proposition 3.5. *Let $(X, \tau_{Z(R)})$ be a T_1 -space and every $Z \in Z(R)$ be a clopen set under $Z(R)$ -topology. Then the following statements hold.*

- (a) *The following statements are equivalent.*
 - (1) $g \in MG_f(R)$.
 - (2) $MG_g(R) \subseteq MG_f(R)$.
 - (3) $Z(f) \subseteq Z(g)$.
- (b) $MG_f(R) = \{g \in R : Z(f) \subseteq Z(g)\}$.
- (c) *An ideal I of R is z_R -ideal if and only if $MG_f(R) \subseteq I$ for every $f \in I$.*

The following corollary follows from Corollary 2.6 and Proposition 3.5.

Corollary 3.6. *Let R be an invertible subalgebra of \mathbb{R}^X . Then the following statements hold.*

- (a) The following conditions are equivalent;
 - (1) $g \in M_f(R)$.
 - (2) $M_g(R) \subseteq M_f(R)$.
 - (3) $Z(f) \subseteq Z(g)$.
- (b) $M_f(R) = \{g \in R : Z(f) \subseteq Z(g)\}$.
- (c) An ideal I of R is z_R -ideal if and only if $M_f(R) \subseteq I$ for every $f \in I$.

It follows from Corollary 3.6 that for an invertible subalgebra R , the notion of z_R -ideal coincides with the notion of z -ideal. The next statement extend this fact and shows that this coincidence is equivalent to invertibility of R .

Theorem 3.7. *Let R be a subring of \mathbb{R}^X . The following statements are equivalent.*

- (a) *Every maximal ideal in R is a g -ideal.*
- (b) *Every maximal g -ideal of R is a maximal ideal and if J is a maximal ideal of R , then every maximal element in the set of g -ideals contained in J is a prime ideal.*
- (c) *Every maximal ideal in R is a g -ideal.*
- (d) *R is an invertible subring.*
- (e) *Every z -ideal of R is a z_R -ideal.*

Moreover, if R is a subalgebra and one of (a)-(c) holds, then every z_R -ideal is a z -ideal.

Proof. (a) \Rightarrow (b). This is clear.

(b) \Rightarrow (c). Suppose that M is a maximal ideal and P is a maximal element of G_M , where G_M is the set of all g -ideals contained in M . Assume that J is a maximal ideal of R containing P . Then $M \cap J = P$. As $M \cap J$ is prime and both M and J are maximal ideal, we have $M = J$. Hence, M is a maximal g -ideal.

(c) \Rightarrow (d). Suppose that $Z(f) = \emptyset$ for $f \in R$ and, on the contrary, f is a non-unit element of R . Clearly, there exists a maximal ideal M of R containing f . By our hypothesis, M is a g -ideal which contradicts with $Z(f) = \emptyset$.

(d) \Rightarrow (e). Suppose that I is a z -ideal and $Z(f) \subseteq Z(g)$ where $f \in I$ and $g \in R$. Since I is a z -ideal, it follows that $M_f \subseteq I$. It suffices to prove that $g \in M_f$. To see this, suppose that M is a maximal ideal containing f . As R is invertible, M is a g -ideal and so it is a maximal g -ideal. Obviously, M is a z_R -ideal and so $g \in M$.

(e) \Rightarrow (a). Suppose that M is a maximal ideal and, on the contrary, M is not a g -ideal. Thus, there exists $f \in M$ such that $Z(f) = \emptyset$. By (e), M is a z_R -ideal and since $f \in M$, it follows that $M = R$, which is a contradiction.

Now, suppose that one of (a)-(c) holds, R is a subalgebra and I is a z_R -ideal of R . By our hypothesis, $MF_f(R) = M_f(R)$ for every $f \in R$, and thus we are done. \square

It is well-known that every minimal prime ideals over a z -ideal is also a z -ideal, see [10, Theorem 14.7]. The same statement holds for z_R -ideals as the following proposition shows.

Proposition 3.8. *Let I be a z_R -ideal of R and P a prime ideal in R minimal over I . Then P is a z_R -ideal.*

Proof. Assume that $Z(f) = Z(g)$ and $f \in P$. Thus, there exists $h \notin P$, such that $fh \in I$. Since $Z(fh) = Z(gh)$ and I is a z_R -ideal, it follows that $gh \in I \subseteq P$. As $h \notin P$, clearly, this implies that $g \in P$. \square

An immediate consequence of Proposition 3.8 is that every minimal prime ideal in a subring R is a z_R -ideal. By the following statement, we extend some fundamental statements about z -ideals in the literature of $C(X)$ to the subrings of \mathbb{R}^X , namely, [10, 2.9, 5.3 and 5.5]. The proofs are left to the reader.

Proposition 3.9. *Let R be a lattice-ordered subring of \mathbb{R}^X and I be a z_R -ideal in R . Then the following statements hold.*

(a) *The following statements are equivalent*

- (1) *I is a prime ideal;*
- (2) *I contains a prime ideal;*
- (3) *if $fg = 0$, then $f \in I$ or $g \in I$;*
- (4) *for each $f \in R$, there is a $Z \in Z_R(I)$ on which f does not change sign.*

(b) *Every prime g -ideal of R is contained in a unique maximal g -ideal.*

(c) *If P is a prime ideal of R , then $Z_R(P)$ is a prime z_R -filter on X .*

(d) *If \mathcal{P} is a prime z_R -filter on X , then $Z_R^{-1}(\mathcal{P})$ is a prime ideal in R .*

(e) *Every z_R -ideal of R is absolutely convex.*

Thus, if I is an absolutely convex ideal of R , then R/I is a lattice ring.

(f) *$I(f) \geq 0$ if and only if $f \geq 0$ on some $Z \in Z_R(I)$.*

(g) *Suppose that there exists $Z \in Z_R(I)$ such that $f(x) > 0$, for every $x \in Z$, then $I(f) > 0$. The converse is true whenever I is a maximal g -ideal.*

4. z_R° -IDEALS AND z° -IDEALS IN SUBRINGS

In this section we generalize the concept of z° -ideals of $C(X)$ to the subrings of \mathbb{R}^X and introduce z_R° -ideal. Coincidence of z_R° -ideals with z° -ideals of R is discussed. Note that, for each element f of a commutative rings S , we use $P_f(S)$ to denote the intersection of all the minimal prime ideals in S containing f .

Definition 4.1. An ideal I of a subring R of \mathbb{R}^X is called a z_R° -ideal, if $\text{int}_X Z(f) \subseteq \text{int}_X Z(g)$, where $f \in I$ and $g \in R$, implies $g \in I$.

The following statement investigates some characterizations of z_R° -ideals in subrings.

Theorem 4.2. *Let R be a subring of \mathbb{R}^X and I be an ideal in R . The following statements are equivalent.*

- (a) I is a z_R° -ideal.
- (b) Whenever $\text{Ann}_C(f) \subseteq \text{Ann}_C(g)$ where $f \in I$ and $g \in R$, then $g \in I$.
- (c) $R \cap P_f(C) \subseteq I$ for each $f \in I$.
- (d) Whenever $P_g(C) \cap R \subseteq P_f(C) \cap R$, where $f \in I$ and $g \in R$, then $g \in I$.

Proof. (a \Rightarrow b). First note that by [3, Lemma 2.1] we have $\text{Ann}_C(f) \subseteq \text{Ann}_C(g)$ if and only if $\text{int}_X Z(f) \subseteq \text{int}_X Z(g)$ for each $f, g \in C(X)$. Now, let I be a z_R° -ideal in R and $\text{Ann}_C(f) \subseteq \text{Ann}_C(g)$ where $f \in I$ and $g \in R$. Thus, by our hypothesis, we have $\text{int}_X Z(f) \subseteq \text{int}_X Z(g)$ which implies that $g \in I$.

(b \Rightarrow c). By [3, Proposition 2.3], we have $P_f(C) = \{g \in C(X) : \text{Ann}_C(f) \subseteq \text{Ann}_C(g)\}$. Thus the proof is evident.

(c \Rightarrow d). Let $P_g(C) \cap R \subseteq P_f(C) \cap R$, where $f \in I$ and $g \in R$. As $f \in I$, by our hypothesis, $P_f(C) \cap R \subseteq I$ and thus $P_g(C) \cap R \subseteq I$ which implies that $g \in I$.

(d \Rightarrow a). Let $\text{int}_X Z(f) \subseteq \text{int}_X Z(g)$ where $f \in I$ and $g \in R$. Therefore, by [3, Lemma 2.1], we have $P_f(C) \subseteq P_g(C)$ and hence $P_f(C) \cap R \subseteq P_g(C) \cap R$. Thus we are done by our hypothesis. \square

Lemma 4.3. *Let R be a subring of \mathbb{R}^X , then for each $f \in R$ we have $P_f(C) \subseteq P_f(R)$.*

Proof. Let $g \in P_f(C)$. By [3, Proposition 2.3.], we have $\text{Ann}_C(f) \subseteq \text{Ann}_C(g)$. Therefore, $\text{Ann}_R(f) = \text{Ann}_C(f) \cap R \subseteq \text{Ann}_C(g) \cap R = \text{Ann}_R(g)$. Thus, by [2, Proposition 1.5] we are done. \square

Theorem 4.4. *Let R be a subring of \mathbb{R}^X . Then every z_R° -ideal in R is a z° -ideal if and only if $P_f(R) = P_f(C)$ for each $f \in R$.*

Proof. (\Rightarrow). Asumme on the contrary that there exists some $f \in R$ such that $P_f(R) \neq P_f(C)$. Thus, using Theorem 4.2 we have $P_f(C) \subseteq P_f(R)$. Again by Theorem 4.2, $P_f(C) \cap R$ is a z_R° -ideal in R . Also, it is clear that this ideal is not a z° -ideal, since, $P_f(R) \not\subseteq P_f(C) \cap R$.

(\Leftarrow). Let I be a z_R° -ideal in R and $f \in I$. By Theorem 4.2, $P_f(C) \cap R \subseteq I$. Thus, by our hypothesis, $P_f(R) \subseteq I$ which means that I is a z° -ideal in R . \square

From Theorem 4.2 it follows that every z° -ideal in a subring R is a z_R° -ideal. However, the converse of this fact does not hold, in general. The following example gives an example of a subring R which has a z_R° -ideal that is not a z° -ideal.

EXAMPLE 4.5. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} x & x > 0 \\ 0 & x \leq 0 \end{cases}$. It is clear that $f \in C(\mathbb{R})$. Now, let $R = \{\sum_{i=0}^n r_i f^i : r_i \in \mathbb{R}, n = 0, 1, \dots\}$. It is easy to see that $P_f(R) = R$, however, $P_f(C) \cap R \neq R$. Also, by Theorem 4.2, $P_f(C) \cap R$ is z_R° -ideal and it is clear that this ideal is not a z° -ideal.

The next theorem gives a sufficient conditions on X in order that z_R° -ideals in a subring R coincide with z° -ideals of R .

Theorem 4.6. *Let R be a subring of \mathbb{R}^X and X be equipped with the $Coz(R)$ -topology. Then an ideal I in R is a z° -ideal if and only if it is a z_R° -ideal.*

Proof. Let I be a z_R° -ideal in R and $f \in I$. As X is equipped with the $Coz(R)$ -topology, we have $g \in Ann_R(f)$ if and only if $Coz(g) \subseteq \text{int}_X Z(f)$ for each $f, g \in R$. Therefore, $P_f(R) = Ann_R Ann_R(f) = \{g \in R : Coz(g) \cap \text{int}_X Z(f) = \emptyset\} = \{g \in R : Ann_R(f) \subseteq Ann_R(g)\}$. Hence, $P_f(R) \subseteq I$ which means that I is a z° -ideal in R . This completes the proof, since, as former stated, every z° -ideal in R is a z_R° -ideal. \square

Note that the condition that X is equipped with the $Coz(R)$ -topology is a sufficient condition for coincidence of z_R° -ideals with z° -ideals in a given subring R . The next example shows that this condition is not necessary.

EXAMPLE 4.7. Let $X = \mathbb{R} \setminus \{0\}$ with the topology inherits from the usual topology on \mathbb{R} . Also, let $f : X \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$. It is clear that $f \in C(X)$ and $f^2 = f$. Now, set $R = \{r + sf : r, s \in \mathbb{R}\}$. It is clear that R is a subring of $C(X)$. Also, by a routine reasoning, one can proves that the only ideals of R are the ideals (0) , (f) , $(1-f)$ and R . Moreover, the minimal prime ideals of R are only the ideals (f) and $(1-f)$. These imply that every z_R° -ideal is a z° -ideal in R . However, clearly, X is not equipped with the $Coz(R)$ -topology.

It follows from Theorem 4.6 that for an intermediate subalgebra $A(X)$ of $C(X)$, z_A° -ideals coincide with z° -ideals of $A(X)$. However, the same statement does not true for z_A -ideals and z -ideals in $A(X)$, in general, see [6, Theorem 2.2]. Moreover, Theorem 3.7 together with Theorem 4.6 imply that in the subalgebras of $C(X)$ which are of the form $\mathbb{R} + I$, where I is a free ideal in $C(X)$, $z_{\mathbb{R}+I}$ -ideals coincide with z -ideals of $\mathbb{R} + I$ and $z_{\mathbb{R}+I}^\circ$ -ideals coincide with z° -ideals, too. Note that whenever I is a free ideal in $C(X)$, then $\mathbb{R} + I$ determines the topology of X .

ACKNOWLEDGMENTS

The authors would like to thank to the referee for careful reading the paper.

REFERENCES

1. A.R. Aliabad, M. Parsinia, Remarks on Subrings of $C(X)$ of the Form $I + C^*(X)$, *Quaest. Math.*, **40**(1), (2017), 63-73.
2. F. Azarpanah, O.A.S. Karamzadeh, A. Rezaei Aliabad, On Ideals Consisting Entirely of Zerodivisor, *Commun. Algebra*, **28**(2), (2000), 1061-1073.

3. F. Azarpanah, O.A.S. Karamzadeh, A. Rezaei Aliabad, On z° -Ideals in $C(X)$, *Fund. Math.*, **160**, (1999), 15-25.
4. F. Azarpanah, M. Karavan, On Nonregular Ideals and z° -Ideals in $C(X)$, *Cech. Math.*, **55**, (130), (2005), 397-407.
5. F. Azarpanah, R. Mohamadian, \sqrt{z} -Ideals and $\sqrt{z^\circ}$ Ideals in $C(X)$, *Acta. Math. Sinica, English Series*, **23** (2007), 989-1006.
6. F. Azarpanah, M. Parsinia, On the Sum of z -Ideals in Subring of $C(X)$, *J. Commut. Algebra*, to appear.
7. H.L. Byun, S. Watson, Prime and Maximal Ideals in Subrings of $C(X)$, *Topology. Appl.*, **40**, (1991), 45-62.
8. J.M. Dominguez, J. Gomez Perez, M.A. Mulero, Intermediate Algebras between $C^*(X)$ and $C(X)$ as Rings of Fractions of $C^*(X)$, *Topology Appl.*, **77**, (1997), 115-130.
9. M. Ghadermazi, O.A.S. Karamzadeh, M. Namdari, On the Functionally Countable Subalgebra of $C(X)$, *Rend. Semin. Math. Univ. Padova*, **129**, (2013), 47-69.
10. L. Gillman, M. Jerison, *Rings of Continuous Functions*, Springer-Verlag, New York., 1978.
11. M. Parsinia, Remarks on *LBI*-Subalgebras of $C(X)$, *Comment. Math. Univ. Carolin.*, **57**, (2016), 261-270.
12. D. Plank, On a Class of Subalgebras of $C(X)$ with Application to $\beta X \setminus X$, *Fund. Math.*, **64**, (1969), 41-54.
13. D. Rudd, On Structure Spaces of Ideals in Rings of Continuous Functions, *Trans. Amer. Math. Soc.*, **190**, (1974), 393-403.
14. A.B. Sidlovskij, N. Koblitz., *Transcendental Numbers*, Walter de Gruyter. Berlin. New York, 1989.