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Abstract. In the present time, evaluating the performance of banks is

one of the important subjects for societies and the bank managers who

want to expand the scope of their operation. One of the non-parametric

approaches for evaluating efficiency is data envelopment analysis(DEA).

By a mathematical programming model, DEA provides an estimation of

efficiency surfaces. A major problem faced by DEA is that the frontier

calculated by DEA may be slightly distorted if the data is affected by

statistical noises. In recent years, using the neural networks is a powerful

non-parametric approach for modeling the nonlinear relations in a wide

variety of decision making applications. The radial basis function neural

networks (RBFNN) have proved significantly beneficial in the evaluation

and assessment of complex systems. Clustering is a method by which a

large set of data is grouped into clusters of smaller sets of similar data. In

this paper, we proposed RBFNN with the K-means clustering method for

the efficiency evaluation of a large set of branches for an Iranian bank.

This approach leads to an appropriate classification of branches. The

results are compared with the conventional DEA results. It is shown that,

using the hybrid learning method, the weights of the neural network are

convergent.

Keywords: Data envelopment analysis; Neural networks; Efficiency; Multi-
layered perceptron; Radial basis function; K-means clustering method.

2000 Mathematics subject classification: 90C05, 92B20, 91C20.

∗Corresponding Author

Received 20 April 2009; Accepted 16 September 2009

c©2009 Academic Center for Education, Culture and Research TMU

33

hossein-zadeh
Typewriter
DOI: 10.7508/ijmsi.2009.02.004



34 G. Aslani, S. H. Momeni-Masuleh, A. Malek and F. Ghorbani

1. Introduction

The improvement of performance for the banks in public or private sectors
is an important way for any country’s progress. Measuring and evaluating the
operating efficiency of bank branches requires analytic techniques that provide
insights beyond those available from accounting ratio analysis. Banks have ag-
gressively sought to improve their performance by improving cash management
and marketing new services that attract additional funds. Therefore, evaluat-
ing the efficiency requires employing different approaches for determining the
efficiency frontier; and there are many researches in this field. Two competing
methods for constructing frontiers are parametric and non-parametric meth-
ods. The chief property of non-parametric methods is that no explicit func-
tional form needs to be imposed on data.
DEA is one of the best non-parametric methods, which creates virtual units to
act as benchmarks for measuring comparative efficiency. On the other hand,
artificial neural networks (ANNs) are also known as powerful systems with
wide applications. ANNs have their basis in the study of complex behavior of
human brain. McCulloch and Pitts [8] presented a first simple neuron. Rosen-
blatt [11] introduced the multi-layered structure which is known as perceptron.
RBFNNs were introduced into neural network literature by Broomhead and
Lowe [4]. These networks are an alternative to multi-layered perceptron be-
cause of their special structure.
In some cases, the existence of noise in data causes deviation in the DEA
frontier. ANNs have been viewed as a good simulation tool to approximate
numerous non-parametric and nonlinear problems. RBFNNs are widely used
in neural network applications such as signal processing and pattern recogni-
tion [3, 10]. They are able to model complex mappings, while perceptron neural
networks can only model by means of multiple intermediary layers. The com-
bination of neural networks and DEA was first proposed by Athanassopoulos
and Curram [1]. They used DEA as a preprocessing tool to filter the data for
the training of the neural networks. Wu et al. [13] used the combination of
neural networks and DEA to examine the relative efficiency of branches of a
big Canadian bank. They followed Athanassopoulos and Curram’s approach to
preprocess the training data; and by selecting the efficient subset for learning,
they guaranteed the monotonicity assumption [9]. The K-means clustering
algorithm is used for the first training phase of RBF [12]. This leads to an
appropriate classification of branches. Because of the good sampling nature
of the data selected by this method, the network generalization capability is
enhanced and the training time is considerably reduced.
This paper combines RBFNN with the K-means clustering method for the eval-
uating the performance of a large set of branches for an Iranian bank, which
is not yet established. To the best of our knowledge, combination of RBFNN,
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K-means clustering and DEA method cannot be found in prior papers.
The rest of this paper is organized as follows: Section 2 addresses the impor-
tant factors in evaluating the performance of bank branches. Section 3 and
Section 4 are devoted to a brief review of DEA and neural networks, respec-
tively. Results and discussion are presented in Section 5 and conclusions are
given in Section 6.

2. Bank branch performance evaluation

The relative efficiency of 280 bank branches of a big Iranian bank are ana-
lyzed here in four cities.
For studying the efficiency of an organization, its objectives and resources are
required to be identified. The outputs would include those services that man-
agement believes are basic to the purpose of the organization, e.g. those services
that a branch manager is expected to provide to customers. The inputs should
reflect the resources that are required to produce the outputs, such that an
increase (decrease) in the amount of inputs used is expected to result in an
increase (decrease) in output levels. Branches are assumed to utilize 6 inputs
and 8 outputs for a period of one year. We aggregate them into six categories,
the list of which is given in Table 1 and Table 2.

Total expenses: = Personnel+ Office expenses + Supply costs,
Supplies: =Space + Computer terminals,
General expenses: =Rent,

Deposits: = Commercial investment deposits + Retail investment +
Commercial deposits +Retail deposits+ Commercial accounts,

Loans: = Commercial loans + Retail loans,
General services: = Revenues.

Normalized input and output values for some selected branches are given in
Table 3. A statistical summary of the basic characteristics of these units is
provided in Table 4. We used the data for each branch for a one-year period.

3. Data envelopment analysis

Data envelopment analysis is a non-parametric linear programming tech-
nique for evaluating efficiencies of individual decision making units (DMUs).
DEA identifies the best-practice frontier as the envelope of the observed pro-
duction possibilities. It can handle multiple input and multiple output models.
It also does not need the assumption of functional form for the relationship
between the inputs and outputs of DMUs.
Suppose that for a group of n DMUs, X = (x1j , x2j , . . . , xmj) and Y =
(y1j , y2j, . . . , ysj) are vectors of inputs and outputs of the jth DMU which
can be represented by DMUj. The DMU under evaluation is represented by
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DMU0. Charnes et al. [5] introduced the DEA model as a linear program that
can be demonstrated as:

CCR Model

Min θ0 − ε(
m∑

i=1

s−i +
s∑

r=1

s+
r )

s.t. ∑n
j=1 λjxij + s−i = θxi0, i = 1, . . . , m,∑n
j=1 λjyrj − s+

r = yr0, r = 1, . . . , s,

λj ≥ 0, s−i ≥ 0, s+
r ≥ 0, j = 1, . . . , n,

ε ≥ 0 and θ0 free.

(1)

where θ0 is the technical efficiency score for DMU0, xij and yrj are the ith
input and rth output of DMUj, respectively, λj are decision variables, s−i and
s+

r are slack variables, and ε ≥ 0 is a small non-Archimedean quantity.
This model has the constant returns to scale (CRS) assumption. In 1984,
Banker et al. [2] presented the BCC-model with the variable returns to scale
(VRS) assumption.

BCC Model

Min θ0 − ε(
m∑

i=1

s−i +
s∑

r=1

s+
r )

s.t. ∑n
j=1 λjxij + s−i = θxi0, i = 1, . . . , m,∑n
j=1 λjyrj − s+

r = yr0, r = 1, . . . , s,∑n
j=1 λj = 1,

λj ≥ 0, s−i ≥ 0, s+
r ≥ 0, j = 1, . . . , n,

ε ≥ 0 and θ0 free.

(2)

DMU0 is efficient if the following conditions are satisfied:
(i) θ∗0=1,
(ii) the slack variables s−

∗
i and s+∗

r are equal to zero, for all i and r.
For each inefficient DMU, DEA can introduce a reference set containing efficient
DMUs as an improvement pattern. In Section 5, we apply DEA to obtain an
initial evaluation of the performance of the branches a big Iranian bank.

4. Artificial neural networks

Artificial Neural Networks (ANNs) are well known as a powerful and flexible
computational tool. Their structure is inspired by the human brain and ner-
vous system. ANNs are widely used because of their capacities. In particular,
the nonlinear nature of neural networks makes them suitable for performing a
variety of tasks such as prediction, function approximation, pattern classifica-
tion, and forecasting. The preference of using ANNs comes from the capacity of
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exploration from the observed data without any assumption regarding under-
lying relationships. In a neural network, multiple neurons are interconnected
with synaptic weights in parallel layers. The primary significance of a network
is ”learning” or ” training”. The process of training involves incrementally
changing the connection weights until the network learns to produce the cor-
rect output. The final weights are the optimal parameters of the network. One
major type of neural network models that have been successfully used for var-
ious tasks is the feed-forward network type. The commonest type of artificial
neural network consists of three kinds of layers: a layer of ”input” units is
connected to a layer of ”hidden” units, which is in turn connected to a layer
of ”output” units. In this paper, we use perceptron and radial basis function,
which belong to the multi-layered feed-forward neural networks group.

4.1. Multi-layered perceptron networks. The multi-layered perceptrons
(MLPs) have been applied to solve many complex problems by being trained
in a supervised manner with a highly popular algorithm known as error back-
propagation [11, 10]. The Levenberg-Marquardt (LM) training method [6] is
one of the second-order methods for error minimization that provides faster
training for medium or small networks. However, for very large networks, the
memory requirement of this algorithm is high. Fig. 1 shows the structure of
an MLP, where each circle represents an individual neuron and the connective
weights and biases are denoted by Wij and bi, respectively.

4.2. Radial basis function neural networks. The radial basis function neu-
ral networks (RBFNNs), were presented into the neural networks literature by
Broomhead and Lowe in 1988 [3, 4]. The basic architecture of RBFNN consists
of three fully connected layers. The RBF neurons in the hidden layer use the
radial basis function as the transfer function, and the inputs to the last, out-
put layer is a linear combination of the outcomes of the hidden neurons. The
most used transfer function for the hidden neurons of RBFNN is the Guassian

function. Let S =
{

(xµ, yµ)
∣∣∣∣ xµ ∈ �r, yµ ∈ �, μ = 1, . . . , n

}
be the set

of n observations. The output of each RBF unit is:

(3) φj(xµ) = exp (−‖xµ − cj‖
σ2

j

), j = 1, . . . , r, μ = 1, . . . , n,

where φj denotes the output of the jth RBF neuron, cj and σj are the center
and width of the jth RBF neuron, xµ ∈ Rr is the μth input vector of pattern
learning and ‖.‖ indicates the Euclidean norm. The response of the network
with one neuron in the output layer is computed as follows:

(4) y(xµ) =
r∑

j=1

wjφj(xµ) + b,
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where y is the output of the network for input vector xµ, wj is the weight
connection between the output unit and the jth hidden layer unit, and b is the
bias for the output unit.
Although the training of multi-layered perceptrons is usually performed by the
back-propagation algorithm, the RBF network can be trained in many different
ways. The hybrid learning method for RBF can be divided into three separate
stages [12] by selecting centers, widths, and weights. In this paper, we combine
unsupervised and supervised strategies for the training process of the network.
In the first step, for unsupervised learning, we choose centers and widths for
hidden neurons. One efficient unsupervised algorithm is the clustering algo-
rithm. It categorizes the input patterns into a finite number of groups. A
very simple and known clustering method is the K-means algorithm [7]. The
K-means algorithm starts with K centers (initial values are selected randomly).
Each pattern in the data set is assigned to the closest center, and finally the
centers are recalculated according to the associated patterns. This process is
repeated until a stopping criterion is satisfied. The algorithm has the following
steps:
(i) Initialize the K centers randomly.
(ii) For each pattern Zp, in the data set, compute its membership u(mk|Zp) in
each cluster with a center mk and its weight W (Zp).
(iii) Recalculate the K centers by the following general formula:

(5) mk =

∑
∀Zp

u(mk|Zp) W (Zp) Zp∑
∀Zp

u(mk|Zp) W (Zp)

until stopping criterion is satisfied. Continue the algorithm until no noticeable
changes are observed in the centers mk.
Note that d2(Zp, mn) = min{d2(Zp, mj) | j = 1, . . . , K } in which d represents
the Euclidean distance. The membership for K-means is defined as:

u(mk|Zp) =
{

1, k = n,

0, otherwise,

and the weight function for all patterns W (Zp) = 1.
Assigning the widths of the hidden neurons is the next stage. They are usually
determined by the P -nearest neighbor algorithm. The widths for each hidden
neuron is computed as the average Euclidean distance from the center to the
P nearest centers. Denote the center of neuron j by mj , then its width is
computed as follows:

(6) σj =
1
P

P∑
i=1

|mj − mi|, j = 1, . . . , K,

where mi are the P -nearest centers to mj , and K is the number of the hidden
neuron. The value of P is chosen by users.
In the second step of the training algorithm, we set the initial weights of the
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output layer at random values. The error is obtained by comparing the output
of the network against the desired output. The weights of the output layer are
adjusted by the supervised strategy by:

(7) �wkj = η

M∑
µ=1

φj(xµ)(yµ
k − Fµ

k ),

where Fµ
k and yµ

k are the actual and target output, respectively, φj(xµ) is the
output of the jth hidden neuron, η is the learning rate, and xµ ∈ Rd is the μth
input vector [12]. The numerical results for training process of the RBFNN are
demonstrated in section 5. Fig. 2 depicts an RBF network with two neurons
in the input and one neuron in the output layer.
The two-phase algorithm for training RBF can be summarized as follows:

(1) Find the centers of the hidden layer by the K-means clustering algo-
rithm. Compute the widths by the P -nearest neighbor method.

(2) Adjust the output layer weights by formula (7).

5. Results and discussion

For training neural networks, 80% of input patterns are used. To assess
simulation model accuracy, the mean squared error (MSE) is used. Hereafter,
we refer to these sets as learning sets. The stages of the neural network-DEA
method are as follows:

Stage 1): The efficiency scores are computed by the CCR (input-oriented)
model. To obtain the preprocessed data set, they are divided by an in-
teger 1000 for the purpose of uncomplicated training and simulation.

Stage 2): By applying the trained MLP, we determine the efficiency
scores. The computed efficiency results using DEA-MLP are demon-
strated in Fig. 3.

Stage 3): In order to analyze the performance of the RBF network, we
use four data sets and consider 80% of them as the learning set. S1 is
the data set for one city and the other data sets are construct by adding
the information of other cities to S1. The characteristics of data sets
are given in detail in Table 5. The structures of the networks under
study are given in Table 6. The efficiency scores are determined by the
trained RBF. Fig. 4 presents the results of the efficiency computed by
DEA-RBF.

Fig. 5 demonstrates the changes of MSE in four data sets S1, S2, S3, and
S4. It shows that by increasing the number of branches in each data set, MSE
is reduced. Figs. (6-9) illustrate the convergence of the output weights in the
RBFNN for different number of DMUs. The convergence is shown by exhibiting
the trajectories network of the weights. These Figures show that by starting
from a random value for each weight, the network will converge in less than 50
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iterations. By a comparison of the number of epochs between MLP and RBF,
it can be seen that convergence happens in a smaller number of iterations in
RBF. Regression analysis results of DEA, DEA-RBF, and DEA-MLP, and their
comparison are shown in Figs. (10-11).

6. Conclusions

We have investigated the performance of radial basis function network and
the multi-layered perceptron network for evaluating the branch efficiency of a
big Iranian bank. The comparisons on parameter settings between the MLP
and RBF neural network models are listed in Table 6. In both processes, DEA
is used to help in preprocessing the data for training the networks. The RBF-
DEA technique proposed in this paper shows an efficient way of evaluating the
branch efficiency in terms of speed training, memory storage, and CPU time
taken to complete the simulation, since it uses a smaller number of neurons
and epochs. Here, with the proposed RBF-DEA model capable of handling a
large bank sample, we hope to develop a general powerful numerical tool for
evaluating the bank branch efficiency.

Table 1. Details of input data.

Input Data

Total expenses Personnel, Office expenses and Supply costs

Supplies Space and Computer terminals

General expenses Rent

Table 2. Details of output data.

Output Data

Commercial deposits, Retail deposits,

Deposits Commercial investment deposits,

Retail investment and Commercial accounts

Loans Commercial loans and Retail loans

General services Revenues
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Table 3. Normalized the input and output values for sample branches.

Branch Expenses Supplies General expenses Deposits Loans General services

1 0.131835 0.309886 0.073586 0.127699 0.17509 0.157728

10 0.177761 0.38375 0.263157 0.144063 0.355913 0.184215

20 0.2968 0.575681 0.14035 0.127166 0.334921 0.241903

30 0.211948 0.386363 0.284113 0.096625 0.087979 0.1312557

40 0.354293 0.309659 0.08382 0.232506 0.594234 0.221732

50 0.130199 0.298863 0.245614 0.064789 0.287397 0.116472

60 0.217072 0.52272 0.631578 0.083914 0.119463 0.137977

100 0.331245 0.22145 0.22457 0.33145 0.203564 0.21457

120 0.02457 0.03321 0.200145 0.40023 0.220124 0.3364

160 0.33654 0.22547 0.40025 0.12458 0.030857 0.45

200 0.55412 0.3354 0.57841 0.332145 0.10021 0.22145

220 0.15969 0.15924 0.16366 0.91434 0.77501 0.42099

240 0.59769 0.65656 0.38291 0.04306 0.58148 0.76384

260 0.7 0.23758 0.87417 0.86073 0.6516 0.87414

280 0.51467 0.84369 0.63633 0.95156 0.26027 0.51467

Table 4. Statistical properties for the normalized inputs and
the outputs of branches.

Data Min Max Average Standard deviation

Expenses 0.0012 0.7768 0.2719 0.1379

Supplies 0.0124 0.9654 0.3409 0.1781

General expenses 0.0110 1.0000 0.2895 0.1839

Deposits 0.0112 0.9901 0.2974 0.2110

Loans 0.0012 1.0000 0.3268 0.2165

General services 0.0124 1.0000 0.3467 0.2401

Table 5. Detailed analysis for different data sets: S1, S2, S3
and S4.

Data set Number of branches Size of learning set Learning rate Mean square error

S1 100 80 0.5 0.118603

S2 200 160 0.1 0.06172

S3 250 200 0.1 0.054917

S4 280 224 0.1 0.052778

Table 6. Structure of networks.

Network architecture Multi-layer perceptron Radial basis function

Number of neurons: input-hidden-output 6-10-1 6-6-1

Activation function: hidden/output tanh /linear radial basis/linear

Learning algorithm Levenberg-Marquardt hybrid

Epoch (Max) 1000 200
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Figure 1. MLP neural network structure with three neurons
in hidden and two neurons in output layer.

Figure 2. RBF neural network structure with three neurons
in hidden and one neuron in output layer.
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Figure 3. The comparison between result of CCR and CCR-
MLP: the squares show the efficiency score computed by CCR
and the circles represent the efficiency score computed by
CCR-MLP.
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Figure 4. The comparison between result of CCR and CCR-
RBF: the squares denote the efficiency score computed by
CCR and the circles represent the efficiency score computed
by CCR-RBF.
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Figure 5. Trajectories of changes in the mean squared error
in RBFNN for data sets S1, S2, S3, and S4.
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Figure 6. The convergence of output weights for S1 for 80
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Figure 7. The convergence of output weights for S2 for 160
DMUs in the training stage.
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Figure 8. The convergence of output weights for S3 for 200
DMUs in the training stage.
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DMUs in the training stage.

Figure 10. Regression analysis results and their comparison
between DEA and DEA-RBF.
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Figure 11. Regression analysis results and their comparison
between DEA and DEA-MLP.
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