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Abstract. In a graph G = (V,E), a subset S ⊆ V (G) is said to be an

open packing set of G if no two vertices of S have a common neighbour

in G. The maximum cardinality of an open packing set is called the open

packing number of G and is denoted by ρo(G). This parameter has been

studied in [5], [6], [7] and [8]. In this paper, we characterize the graphs

G with ρo(G) = n− 2, ρo(G) = n− ω(G) and ρo(G) = n−∆(G), where

n, ω(G) and ∆(G) denote the order, clique number and the maximum

degree of G. Also, we discuss the open packing number for split graphs.
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1. Introduction

By a graphG = (V,E), we mean a finite, undirected graph with neither loops

nor multiple edges. For graph theoretic terminology we refer to Chartrand and

Lesniak [3].

The open neighbourhood of a vertex v is N(v)={u ∈ V : uv ∈ E} while

its closed neighbourhood is N [v]=N(v) ∪ {v}. For a set S ⊆ V , the subgraph

induced by S is denoted by ⟨S⟩. A clique in a graph G is a complete subgraph

of G. The maximum order of a clique in G is called the clique number and is
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denoted by ω(G). The corona of two disjoint graphs G1 and G2 is defined to

be the graph G = G1 ◦G2 formed from one copy of G1 and |V (G1)| copies of
G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2.

The distance d(u, v) between two vertices u and v of a connected graph G is

defined to be the length of a shortest path joining u and v. The diameter of a

connected graph G, denoted by diam(G), is the maximum distance among all

pairs of vertices in G. A u − v path in G with d(u, v) = diam(G) is called a

diametrical path.

A set S of vertices of G where no two vertices are adjacent in G is called

an independent set of G. The independence number α(G) of G is defined to be

the maximum cardinality of an independent set of G. A set S of vertices of G

is an open packing set of G if the open neighbourhoods of the vertices of S are

pairwise disjoint in G. The open packing number of G, denoted by ρo(G), is

the maximum cardinality of an open packing set of G. An open packing set of

cardinality ρo(G) is called an ρo-set of G. In fact, a ρo-set of a graph G is an

α-set of a common neighbourhood graph con(G) of G (see [1]). More details

about the open packing number can be seen in [5], [6], [7], [8] and [9]. This

paper extends the study of the open packing number. We state the following

results that are needed in the subsequent sections.

Theorem 1.1. [8] Let G be a graph of order at least 3. Then ρo(G) = 1 if and

only if diam(G) ≤ 2 and every edge of G lies on a triangle.

Theorem 1.2. [8] If G is a connected graph on n vertices with ∆(G) = n− 1,

then ρo(G) ≤ 2. Further, ρo(G) = 2 if and only if δ(G) = 1.

Theorem 1.3. [8] For any connected graph G of order n ≥ 3, ρo(G) ≤ n −
ω(G) + 1 with equality if and only if G is either Kn or a graph obtained from

Kn−1 by adding a vertex and joining it to exactly one vertex of Kn−1.

2. Open Packing, Clique Number and Maximum Degree

In this section, we obtain some bounds for the open packing number in

terms of order, clique number and the maximum degree. It is obvious that for

a connected graph G of order n, ρo(G) = n if and only if G is either K1 or K2;

and ρo(G) = n − 1 if and only if G is P3. The class of connected graphs G of

order n ≥ 3 for which ρo(G) = n− 2 is determined below.

Theorem 2.1. Let G be a connected graph of order n ≥ 3. Then ρo(G) = n−2

if and only if G is one of the graphs P4, P5, P6, C3, C4, K1,3 and the graph H

of Figure 1.

Proof. Let ρo(G) = n − 2. If ρo(G) = 1, then n = 3 and consequently by

Theorem 1.1, we have G ∼= C3. Assume that ρo(G) ≥ 2. Let S be a ρo- set of

G and let V − S = {x, y}. Then each of x and y has at most one neighbour

in S. Consider the case that x and y have neighbours in S, say u and v
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respectively. Suppose u = v. Since G is connected and S is open packing it

follows that |S| = 2 and ⟨S⟩ = K2. Hence G is isomorphic either to K1,3 or

to the graph H of Figure 1 according to xy /∈ E(G) or xy ∈ E(G). Suppose

u ̸= v. If uv ∈ E(G), then S = {u, v} so that G is isomorphic either to P4 or

to C4 according to xy /∈ E(G) or xy ∈ E(G). If uv /∈ E(G), then xy ∈ E(G).

Further, each of u and v has at most one neighbour in S and that are distinct.

Therefore, G is isomorphic either to P4 or P5 or P6.

On the other hand, suppose exactly one of x and y, say x, has a neighbour

u in S. Then x and y must be adjacent. Certainly, u will have a neighbour in

S; for otherwise G = P3 for which ρo(G) = n − 1. Therefore, G ∼= P4. The

converse is just a simple verification. □

b

b b

b

Figure 1: The graph H said in Theorem 2.1.

It has been proved in [8] that for a connected graph G of order n, ρo(G) ≤
n − ω(G) + 1. The characterization of graphs attaining this bound is also

obtained in [8]. Here, we characterize those graphs for which ρo(G) = n−ω(G).

For this purpose, we describe the following families of graphs.
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(i) Let F1 be the family of non-complete connected graphs of order n ≥ 4

obtained from the graph H1 of Figure 2 by joining the vertex v with

any number of vertices of the clique Kn−1.

(ii) Let F2 be the family of connected graphs G of order n ≥ 3 that are

constructed as follows. Consider the graph H2 of Figure 2. Add a new

vertex v. Join the vertex v with any number of vertices of H2 satisfying

the conditions that (i) the vertex v has at most n− 3 neighbors in the

clique Kn−2. (ii) the vertex v cannot be adjacent with both u and w

simultaneously. (In particular, P4, C4 and K1,3 belong to this family).

(iii) Let F3 be the family of connected graphs G of order n ≥ 4 obtained

from the graph H3 of Figure 2 by joining the vertex v with at most

n − 3 vertices of the clique Kn−2. (In particular, P4 belongs to this

family).

(iv) Let F4 be the family of connected graphs G of order n ≥ 5 obtained

from the graph H4 of Figure 2 by joining the vertex v with at most

n − 4 vertices of the clique Kn−3. (In particular, P5 belongs to this

family).

(v) Let F5 be the family of connected graphs G of order n ≥ 5 obtained

from the graph H5 of Figure 2 by joining the vertex v with any of

the vertices of the clique Kn−3 except the vertex u. (In particular, P5

belongs to this family).

(vi) Let F6 be the family of connected graphs G of order n ≥ 6 obtained

from the graph H6 of Figure 2 by joining the vertex v with any of

the vertices of the clique Kn−4 except the vertex u. (In particular, P6

belongs to this family).

(vii) Let F7 be the family consisting of the connected graphs G of order

n ≥ 4, other than the graph H7 of Figure 2, that are constructed as

follows. Consider the complete graph H = Kl on l vertices, where

2 ≤ l ≤ n− 1. Attach either a path P2 or a path P3, but not both, at

the vertices of H(not necessarily at all the vertices of H). The vertices

outside H can be made adjacent with the vertices of H; and a pendant

vertex of a P2 attached can also be made adjacent with a pendant

vertex of another P2 attached, satisfying the following conditions (i)

ω(G) = l (ii) degree of each vertex lying on H is either l or l − 1 and

(iii) each component of G−H is either K1 or K2. (In particular, P4,

P5 and P6 belong to this family).

Theorem 2.2. Let G be a connected graph of order n ≥ 3. Then ρo(G) =

n− ω(G) if and only if G ∈
7∪

i=1

Fi.

Proof. Let us first verify that for a graph G belonging to one of the families

F1 to F7, ρ
o(G) = n−ω(G). If G ∈ F1, then ω(G) = n− 1 and ∆(G) = n− 1.
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As δ(G) ≥ 2, by Theorem 1.2, ρo(G) = 1 = n− (n− 1) = n− ω(G). Suppose

that G ∈ F2. Then ω(G) = n − 2 and the set {u,w} forms an open packing

set of G so that ρo(G) ≥ 2. Further, any open packing set S of G can have

at most one vertex from the clique and in case S has a vertex from the clique,

then it has at most one vertex from outside the clique. Thus ρo(G) ≤ 2 and

hence ρo(G) = 2 = n− (n− 2) = n− ω(G).

Suppose thatG ∈ F3. Then ω(G) = n−2. Obviously, the pendant neighbour

of the vertex v together with v form a maximum open packing set of G so that

ρo(G) = 2 = n − (n − 2) = n − ω(G). Now, suppose that G ∈ F4. Then

ω(G) = n − 3. Let w be the pendant vertex of G and let u be the support

vertex of w that is adjacent with the vertex v in G. Let v′ ̸= w be a non-

neighbour of v. Obviously, the set {u,w, v′} is an open packing set of G so that

ρo(G) ≥ 3. Also, any open packing set of G can have at most one vertex from

the clique and at most two vertices from outside the clique and so ρo(G) ≤ 3.

Therefore ρo(G) = 3 = n− (n− 3) = n− ω(G).

Suppose that G ∈ F5. Let u′ and v′ be the pendant neighbours of u and

v respectively in G. Since v is not adjacent with u, the set {u′, v, v′} forms

an open packing set of G so that ρo(G) ≥ 3. Also, it is clear that any open

packing set of G can have at most three vertices (one vertex from the clique

and two vertices from outside of the clique) so that ρo(G) ≤ 3. Hence ρo(G) =

3 = n − (n − 3) = n − ω(G). Suppose that G ∈ F6. Then ω(G) = n − 4

and it is not difficult to see that any open packing set of G has at most four

vertices so that ρo(G) ≤ 4. Further, the two pendant vertices of G and their

respective supports form an open packing set of G so that ρo(G) ≥ 4. Therefore

ρo(G) = 4 = n− (n− 4) = n− ω(G).

Suppose that G ∈ F7. Then the vertices outside the clique together form

an open packing set of G so that ρo(G) ≥ n− ω(G). Now, in view of Theorem

1.3, ρo(G) ≤ n− ω(G) and hence ρo(G) = n− ω(G).

Conversely, assume that ρo(G) = n−ω(G). If ω(G) = 2, then it follows from

Theorem 2.1 that G is one of the graphs P4, P5, P6, C4 and K1,3. Certainly,

the graphs P4, C4 and K1,3 belong to F2; P5 ∈ F5 and P6 ∈ F6. Assume that

ω(G) ≥ 3. Let H be a clique in G with order ω(G) and let S be a ρo- set of G.

Case 1. S ∩ V (H) ̸= ∅.
Then S ∩ V (H) consists of exactly one vertex, say u. Let v be the vertex of

G that lies neither in H nor in S. The following facts are easy to observe.

Fact 1: No vertex of S − {u} has a neighbour in H − {u}.
Fact 2: Each component of ⟨S⟩ is either K1 or K2.

Fact 3: The vertex v can have at most one neighbour in S.

Fact 4: The vertex v must have at least one non-neighbour in H.

These facts along with the connectedness ofG imply that |S| ≤ 4. Now, suppose

that |S| = 1. Then ω(G) = n− 1 and so by Fact 4, the vertex v is adjacent to
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at most n− 2 vertices of H. At the same time, the vertex v must have at least

two neighbours in H; for otherwise ρo(G) would become 2. Therefore, G ∈ F1.

Suppose that |S| = 2; say S = {u,w}. If u and w are adjacent, then G ∈ F2;

otherwise G ∈ F3. Suppose that |S| = 3; say S = {u,w1, w2}. By Fact 1, Fact

3 and by the connectedness of G, we have ⟨S⟩ = K1 ∪K2. If u is the isolate

vertex of ⟨S⟩, again by Fact 3, exactly one of w1 and w2, say w1, is adjacent

to v; and also v must have at least one neighbour in H − {u}, so that G ∈ F5.

If u is not an isolate in ⟨S⟩, then u is adjacent either to w1 or to w2(but not

both), say w1. Then by Fact 1, w2 is adjacent with v and so, by Fact 3, v is

adjacent neither to u nor to w1 which in turn implies that v has a neighbour

in H −{u}. Therefore, by Fact 4, G ∈ F4. When |S| = 4, we can prove by the

similar argument that G ∈ F6.

Case 2. S ∩ V (H) = ∅.
As we observed, each component of ⟨S⟩ is either K1 or K2. Being G con-

nected, each isolate of ⟨S⟩ has at least one neighbour in H and if uv is an edge

of ⟨S⟩, then either u or v has at least one neighbour in H. Further, no two

vertices of S have a common neighbour in H so that each vertex lying on H

has degree either ω(G) or ω(G)− 1 and each component of G−H is either K1

or K2. Therefore, G ∈ F7. □

In the following we obtain a bound for ρo in terms of the maximum degree.

Theorem 2.3. If G is a connected graph of order n ≥ 3, then ρo(G) ≤ n −
∆(G)+1. Further, the equality holds if and only if ∆(G) = n−1 and δ(G) = 1.

Proof. If S is an open packing set of G, then for any vertex u of G, we have

|N(u) ∩ S| ≤ 1; this means that |V − S| ≥ degu − 1 and consequently |S| ≤
n+ 1− degu. Hence the inequality follows.

Now, suppose that ρo(G) = n−∆(G) + 1. Let v be a vertex of G with deg

v = ∆(G). Consider a ρo- set D of G. Since |V −D| = ∆(G)−1 and any vertex

in V −D has at most one neighbour in D, it follows that v ∈ D. Also, exactly

one neighbour of v, say w, lies in D. This means that V −D = N(v) − {w}.
Since G is connected and D is an open packing set, we have D = {v, w} and

w is a pendant vertex. Therefore, ∆(G) = n− 1 and δ(G) = 1. Conversely, if

∆(G) = n − 1 and δ(G) = 1, then it follows from Theorem 1.2 that ρo(G) =

2 = n−∆(G) + 1. □

In the following theorem, we characterize the family of trees T of order n ≥ 4

for which ρo(T ) = n−∆(T ). In this connection, we define ℑ to be the family

of trees that are obtained from a star on at least 3 vertices by subdividing each

edge of the star at most two times such that (i) at least one edge of the star is

subdivided (ii) not all the edges of the star are subdivided twice.
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Theorem 2.4. Let T be a tree of order n ≥ 4. Then ρo(T ) = n−∆(T ) if and

only if T ∈ ℑ or T is one of the graphs T1, T2 and T3 given in Figure 3.

Proof. Suppose that ρo(T ) = n − ∆(T ). Certainly, ρo(T ) ≥ 2. Let u be a

vertex of T such that deg u = ∆(T ) and let S be a ρo-set of T . We prove the

theorem by considering the following two cases.

Case 1. u ∈ S

Since S contains at least two vertices and |V − S| = ∆(T ), exactly one

neighbour of u, say v, lies in S. Let x /∈ N(u) be the vertex of T lying in V −S.

Now, the definition of open packing set implies that |S| ≤ 4. Suppose that

|S| = 2. Then S = {u, v}. Certainly, the vertex x is adjacent either to v or to

exactly one vertex lying in N(u) ∩ (V − S). In either case T ∼= T1. Suppose

that |S| = 3. Let w be the vertex of S other than u and v. Then x must be

adjacent with w and it has exactly one neighbour in N(u) ∩ (V − S). In this

case T ∼= T2. If |S| = 4, let w1 and w2 be the vertices of S distinct from u and

v. Then w1w2 ∈ E(T ). Also, x is adjacent to exactly one of w1 and w2; and it

has exactly one neighbour in N(u) ∩ (V − S). This implies that T ∼= T3.

b
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bT1 T2 T3

Figure 3: The trees T1, T2 and T3 described in Theorem 2.4

Case 2. u /∈ S

Then S contains exactly one neighbour of the vertex u. Since no two vertices

of S have a common neighbour in T and T is a tree, it follows that exactly one

vertex of each component of ⟨S⟩ has exactly one neighbour in V −S and those

neighbours are distinct. Therefore T ∈ ℑ.
Conversely, suppose T ∈ ℑ or T is one of the graphs T1, T2 and T3 given in

Figure 3. We need to verify that ρo(T ) = n−∆(T ). The result is easily follows

for the case that T is isomorphic to one of the graphs T1, T2 and T3. So, assume

that T ∈ ℑ. Then ∆(T ) ̸= n− 1 and thus ρo(T ) ≤ n−∆(T ) by Theorem 2.3.

Let v be the center vertex of the star. Obviously, all the vertices in V (T )−N [v]

are together with exactly one vertex from N(v) form an open packing set of T

so that ρo(T ) ≥ |V (T )−N [v]|+1 = n− (∆(T )+1)− 1 = n−∆(T ) and hence

ρo(T ) = n−∆(T ). □
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3. More Results

Here we discuss how the open packing number is related with some existing

graph theoretic parameters such as diameter, independence number and the

equivalence number.

Theorem 3.1. Let G be a connected graph with diam(G)=k. Then ρo(G) ≥⌈
k+1
3

⌉
and the bound is sharp.

Proof. Let P=(v1, v2, ..., vk+1) be a diametrical path of length k in G. Consider

the set S = {v3i+1 : 0 ≤ i ≤
⌊
k
3

⌋
}. Since distance between any two vertices

belonging to S is at least 3, we have S is an open packing set of G with

cardinality
⌈
k+1
3

⌉
and so the result follows. A graph attaining this bound is

given in Figure 4. □

b b b bb

b b

Figure 4: A graph G with diam(G) = 4 and ρo(G) = 2

Theorem 3.2. Let G be a graph of order at least 2. Then ρo(G) ≤ 2α(G).

Further, equality holds if and only if each component of G is K2.

Proof. As each component of the subgraph induced by a ρo- set S of G is either

K1 or K2, the set consisting of exactly one vertex from each component of ⟨S⟩
is an independent set of G and so the inequality follows.

Now, suppose that ρo(G) = 2α(G). Let S be any ρo- set of G. Then ⟨S⟩
has no isolates. So, it is enough to prove that V − S = ∅. On the contrary,

suppose that there is a vertex w in V − S. Then w has exactly one neighbour

in S, say u. Let v be the neighbour of u in S. Now, an independent set of

cardinality more than n
2 is possible by choosing one vertex from each component

of ⟨S − {u, v}⟩ along with the vertices v and w, which is a contradiction. Thus

G = ⟨S⟩ = ∪K2. The converse is just a simple verification. □

The concept of equivalence set was introduced in [2]. A subset S of V is

called an equivalence set if every component of the induced subgraph ⟨S⟩ is

complete. The equivalence number βe(G) is the maximum cardinality of an

equivalence set of G. The following theorem connects ρo and the equivalence

number βe.

Theorem 3.3. For any graph G, we have ρo(G) ≤ βe(G). Further,
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(i) If G is a connected graph of order at least two with ρo(G) = βe(G),

then ρo(G) is even. Further, given even integer k ≥ 2, there exists a

connected graph G for which ρo(G) = βe(G) = k.

(ii) Given integers a and b with a ≤ b−1 and b ≥ 3, there exists a connected

graph G for which ρo(G) = a and βe(G) = b.

Proof. Every open packing set of G is also an equivalence set of G because each

component of the subgraph induced by an open packing set is either K1 or K2.

This establishes the inequality.

(i) Let G be a connected graph of order at least 2 with ρo(G) = βe(G). Suppose

that ρo(G) is an odd integer. Then ⟨S⟩ has an isolated vertex, say u. Being G

connected, the vertex u has a neighbour in V −S, say v. As no two vertices of S

have a common neighbour, v has no neighbour in S other than u. This implies

that S ∪ {v} is an equivalence set of G so that βe(G) > |S|, a contradiction.

Now, let k ≥ 2 be an even integer. We construct a graph G with ρo(G) =

βe(G) = k as follows. Consider a path P = (v1, v2, ..., vk) on k vertices. Add k

vertices, say v′1, v
′
2, ... , v′k, and join by an edge the vertex v′i with vi for each

i = 1, 2, ..., k. Also join by an edge the vertex v2i−1 with the vertex v2i, for

each i with 1 ≤ i ≤ k
2 . Finally, add the edges v′1v

′
2, v

′
3v

′
4..., v

′
k−1v

′
k. Let G be

the resultant graph. For k = 6, the graph G is illustrated in Figure 5.

b b b b b b

b b b b b b

Figure 5: A graph G with ρo(G) = βe(G) = 6

Obviously, the set S = {v′i : 1 ≤ i ≤ k} forms a maximal open packing set as

well as a maximal equivalence set ofG so that ρo(G) ≥ k and βe(G) ≥ k. On the

other hand, any maximal equivalence set D of G can have at most two vertices

from each cycle(on 4 vertices) of G and so |D| ≤ k. Therefore βe(G) ≤ k. The

inequality ρo(G) ≤ k follows from the fact that ρo(G) ≤ βe(G).

(ii) Let a and b be positive integers with a ≤ b− 1 and b ≥ 3. When a = 1,

take G = Kb and when a ≥ 2, let G be the graph obtained from the complete

graph Kb by attaching exactly one pendant edge at a vertices of Kb. Now, it

is an easy verification that ρo(G) = a and βe(G) = b. □

4. Split Graphs

We present here an upper bound for the open packing number for the family

of split graphs in terms of order and characterize those split graphs attaining

the bound. Recall that, a graph G is said to be a split graph if the vertex set
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V (G) can be partitioned into two non-empty sets V1 and V2 such that ⟨V1⟩
is complete and ⟨V2⟩ is totally disconnected. Here (V1, V2) is called a split

partition of G.

Proposition 4.1. If G is a connected split graph of order n ≥ 4, then ρo(G) ≤
n
2 .

Proof. Let (V1, V2) be a split partition of G, where V1 is a clique and V2 is

independent. If |V1| = 1, then G ∼= K1,n−1 and so ρo(G) = 2 ≤ n
2 as n ≥ 4.

Now, assume that |V1| ≥ 2. If |V1| = 2 and G contains no triangle, then

ρo(G) = 2 ≤ n
2 . So, assume the case that G is a split graph with the property

that either |V1| > 2 or G has a triangle when |V1| = 2. Let S be a ρo-set of G.

Being G connected, S contains at most one vertex of V1. If S contains a vertex

of V1, then it can have at most one vertex of V2 and so ρo(G) ≤ 2 ≤ n
2 as n ≥ 4.

Suppose S ∩ V1 = ϕ. Certainly, every vertex of V2 is adjacent to a vertex of V1

and therefore S may contain maximum |V1| vertices of V2; for otherwise two of

its vertices will have a neighbour in common. Hence ρo(G) ≤ min{|V1| , |V2|}.
Now, if |V1| ≤ |V2|, then 2 |V1| ≤ |V1|+ |V2| = n and so |V1| ≤ n

2 . If |V1| ≥ |V2|,
then 2 |V2| ≤ n so that |V2| ≤ n

2 . Thus ρ
o(G) ≤ n

2 . □

In the following theorem, we characterize the split graphs of even order

attaining the bound given in Proposition 4.1.

Theorem 4.2. Let G be a connected split graph of even order n ≥ 4. Then

ρo(G) = n
2 if and only if G is one of the graphs K1,3, Kn

2
◦K1 and the graph

H of Figure 1.

Proof. The graphs K1,3, K4, K4 − e, P4
∼= K2 ◦K1 and the graph H of Figure

1 are the only connected split graphs on 4 vertices. For all these graphs but

K4 and K4 − e, the value of ρo is 2. That is, P4, K1,3 and the graph H are the

only connected split graphs of order n = 4 with ρo(G) = 2 = n
2 . So, consider a

connected split graph G of even order n ≥ 6. Let (V1, V2) be a split partition

of G and let S be a ρo- set of G. Being G a connected split graph, every vertex

of V2 has a neighbour in V1. Therefore, if we prove that S ⊆ V2, then every

vertex of V2 lying in S has exactly one neighbour in V1 and that are distinct

so that |V1| = |V2| = n
2 as |S| = n

2 ; which will imply that G = Kn
2
◦K1. So,

let us prove that S ⊆ V2. Certainly, S can have at most two vertices of V1. If

|S ∩ V1| = 2, then |V1| = 2. As |S| ≥ 3, S must contain at least one vertex of

V2 and since this vertex is adjacent to a vertex of V1, the set S is no longer

an open packing set of G, a contradiction. Now, if |S ∩ V1| = 1, then S has

at least two vertices of V2. If x is the vertex lying in V1 ∩ S; and u and v are

vertices lying in V2 ∩ S, then one of u and v, say v, has a neighbour y in V1

other than x. Now, y is a common neighbour to both x and v, a contradiction.

Thus S ⊆ V2 as desired. □
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