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Abstract. The main purpose of this paper is to obtain sufficient condi-

tions for existence of points of coincidence and common fixed points for

a pair of self mappings satisfying some expansive type conditions in b-

metric spaces. Finally, we investigate that the equivalence of one of these

results in the context of cone b-metric spaces cannot be obtained by the

techniques using scalarization function. Our results extend and generalize

several well known comparable results in the existing literature.

Keywords: b-Metric space, Scalarization function, Point of coincidence, Com-

mon fixed point.

2000 Mathematics subject classification: 54H25, 47H10.

1. Introduction

Fixed point theory plays an important role in applications of many branches

of mathematics. There has been a number of generalizations of the usual notion

of a metric space. One such generalization is a b-metric space introduced and

studied by Bakhtin [5] and Czerwik [8]. After that a series of articles have been

dedicated to the improvement of fixed point theory. In [15], Huang and Zhang

introduced the concept of cone metric spaces as a generalization of metric spaces

and proved some important fixed point theorems in such spaces. In most of

those articles, the authors used normality property of cones in their results.
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Recently, Hussain and Shah[16] introduced the concept of cone b-metric spaces

and studied some topological properties. The aim of this work is to establish

sufficient conditions for existence of points of coincidence and common fixed

points for a pair of self mappings satisfying some expansive type conditions in

the setting of b-metric spaces. In fact, Theorem 3.1 and its corollaries, as well

as Theorem 4.11 are respectively variations of the results of [23] in b-metric

spaces and cone b-metric spaces. Moreover, we investigate that the equivalence

of one of these results in the context of cone b-metric spaces can be obtained by

the techniques using scalarization function and the other cannot be obtained

by the same techniques.

2. Preliminaries

In this section we need to recall some basic notations, definitions, and nec-

essary results from existing literature.

Definition 2.1. [8] Let X be a nonempty set and s ≥ 1 be a given real

number. A function d : X × X → R+ is said to be a b-metric on X if the

following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a metric space

is satisfied, however it does not hold true when s > 1. Thus the class of b-metric

spaces is effectively larger than that of the ordinary metric spaces. That is,

every metric space is a b-metric space, but the converse need not be true. The

following example illustrates the above remarks.

Example 2.2. Let X = {−1, 0, 1}. Define d : X×X → R+ by d(x, y) = d(y, x)

for all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1.

Then (X, d) is a b-metric space, but not a metric space since the triangle

inequality is not satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2 .

Example 2.3. [27] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where

p > 1 is a real number. Then ρ is a b-metric with s = 2p−1.

Definition 2.4. [7] Let (X, d) be a b-metric space, x ∈ X and (xn) be a

sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by

lim
n→∞

xn = x or xn → x(n→∞).
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(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is conver-

gent.

Remark 2.5. [7] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.

(iii) In general, a b-metric is not continuous.

The following example shows that a b-metric need not be continuous.

Example 2.6. [18] Let X = N ∪ {∞} and let d : X ×X → R be defined by

d(m,n) =



0, if m = n,

| 1
m −

1
n |, if one of m, n is even and the other is even or ∞,

5, if one of m, n is odd and the other is odd (and m 6= n) or ∞,

2, otherwise.

Then considering all possible cases, it can be checked that for all m,n, p ∈ X,

we have

d(m, p) ≤ 5

2
(d(m,n) + d(n, p)).

Then, (X, d) is a b-metric space (with s = 5
2 ). Let xn = 2n for each n ∈ N.

Then

d(2n,∞) =
1

2n
→ 0 as n→∞,

that is, xn →∞, but d(xn, 1) = 2 6→ 5 = d(∞, 1) as n→∞.

Theorem 2.7. [4] Let (X, d) be a b-metric space and suppose that (xn) and

(yn) converge to x, y ∈ X, respectively. Then, we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then lim
n→∞

d(xn, yn) = 0.

Moreover, for each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 2.8. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and

let T : X → X be a given mapping. We say that T is continuous at x0 ∈ X if

for every sequence (xn) in X, we have xn → x0 as n → ∞ then Txn → Tx0
as n → ∞. If T is continuous at each point x0 ∈ X, then we say that T is

continuous on X.
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Definition 2.9. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A

mapping T : X → X is called expansive if there exists a real constant k > s

such that

d(Tx, Ty) ≥ k d(x, y)

for all x, y ∈ X.

Definition 2.10. [1] Let T and S be self mappings of a set X. If y = Tx = Sx

for some x in X, then x is called a coincidence point of T and S and y is called

a point of coincidence of T and S.

Definition 2.11. [22] The mappings T, S : X → X are weakly compatible, if

for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.12. [1] Let S and T be weakly compatible selfmaps of a nonempty

set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is

the unique common fixed point of S and T .

3. Main Results

In this section, we prove some point of coincidence and common fixed point

results in b-metric spaces.

Theorem 3.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Sup-

pose the mappings f, g : X → X satisfy the condition

d(fx, fy) ≥ αd(gx, gy) + β d(fx, gx) + γ d(fy, gy) (3.1)

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α+β+γ > s.

Assume the following hypotheses:

(i) β < 1 and α 6= 0, (ii) g(X) ⊆ f(X), (iii) f(X) or g(X) is complete.

Then f and g have a point of coincidence in X. Moreover, if α > 1, then the

point of coincidence is unique. If f and g are weakly compatible and α > 1,

then f and g have a unique common fixed point in X.

Proof. Let x0 ∈ X and choose x1 ∈ X such that gx0 = fx1. This is possible

since g(X) ⊆ f(X). Continuing this process, we can construct a sequence (xn)

in X such that fxn = gxn−1, for all n ≥ 1.

By (3.1), we have

d(gxn−1, gxn) = d(fxn, fxn+1)

≥ αd(gxn, gxn+1) + βd(fxn, gxn) + γd(fxn+1, gxn+1)

= αd(gxn, gxn+1) + βd(gxn−1, gxn) + γd(gxn, gxn+1)

which gives that

d(gxn, gxn+1) ≤ λd(gxn−1, gxn)
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where λ = 1−β
α+γ . It is easy to see that λ ∈ (0, 1s ).

By induction, we get that

d(gxn, gxn+1) ≤ λnd(gx0, gx1) (3.2)

for all n ≥ 0.

For m,n ∈ N with m > n, we have by repeated use of (3.2)

d(gxn, gxm) ≤ s [d(gxn, gxn+1) + d(gxn+1, gxm)]

≤ sd(gxn, gxn+1) + s2d(gxn+1, gxn+2) + · · ·
+sm−n−1 [d(gxm−2, gxm−1) + d(gxm−1, gxm)]

≤
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−n−1λm−1

]
d(gx0, gx1)

≤
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−nλm−1

]
d(gx0, gx1)

= sλn
[
1 + sλ+ (sλ)2 + · · ·+ (sλ)m−n−2 + (sλ)m−n−1

]
d(gx0, gx1)

≤ sλn

1− sλ
d(gx0, gx1).

So (gxn) is a Cauchy sequence in g(X). Suppose that g(X) is a complete

subspace of X. Then there exists y ∈ g(X) ⊆ f(X) such that gxn → y and

also fxn → y. In case, f(X) is complete, this holds also with y ∈ f(X). Let

u ∈ X be such that fu = y.

By (3.1), we have

d(gxn−1, fu) = d(fxn, fu)

≥ αd(gxn, gu) + βd(fxn, gxn) + γd(fu, gu)

≥ αd(gxn, gu).

If α 6= 0, then

d(gxn, gu) ≤ 1

α
d(gxn−1, fu).

Therefore,

d(y, gu) ≤ s[d(y, gxn) + d(gxn, gu)]

≤ s[d(y, gxn) +
1

α
d(gxn−1, fu)]

= s[d(y, gxn) +
1

α
d(fxn, fu)].

Taking limit as n → ∞, we have d(y, gu) = 0, i.e., gu = y and hence

fu = gu = y. Therefore, y is a point of coincidence of f and g.

Now we suppose that α > 1. Let v be another point of coincidence of f and

g. So fx = gx = v for some x ∈ X. Then

d(y, v) = d(fu, fx) ≥ αd(gu, gx) + βd(fu, gu) + γd(fx, gx) = αd(y, v),
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which implies that

d(y, v) ≤ 1

α
d(y, v).

Since α > 1, we have d(v, y) = 0 i.e., v = y. Therefore, f and g have a unique

point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.12 , f and g have

a unique common fixed point in X. �

Corollary 3.2. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Sup-

pose the mappings f, g : X → X satisfy the condition

d(fx, fy) ≥ αd(gx, gy)

for all x, y ∈ X, where α > s is a constant. If g(X) ⊆ f(X) and f(X) or g(X)

is complete, then f and g have a unique point of coincidence in X. Moreover,

if f and g are weakly compatible, then f and g have a unique common fixed

point in X.

Proof. It follows by taking β = γ = 0 in Theorem 3.1.

�

The following Corollary is the b-metric version of Banach’s contraction prin-

ciple.

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Suppose the mapping g : X → X satisfies the contractive condition

d(gx, gy) ≤ λ d(x, y)

for all x, y ∈ X, where λ ∈ (0, 1s ) is a constant. Then g has a unique fixed point

in X. Furthermore, the iterative sequence (gnx) converges to the fixed point.

Proof. It follows by taking β = γ = 0 and f = I, the identity mapping on X,

in Theorem 3.1.

�

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Suppose the mapping f : X → X is onto and satisfies

d(fx, fy) ≥ αd(x, y)

for all x, y ∈ X, where α > s is a constant. Then f has a unique fixed point in

X.

Proof. Taking g = I and β = γ = 0 in Theorem 3.1, we obtain the desired

result.

�
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Corollary 3.5. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Suppose the mapping f : X → X is onto and satisfies the condition

d(fx, fy) ≥ αd(x, y) + β d(fx, x) + γ d(fy, y)

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α 6= 0, β <

1, α+ β + γ > s. Then f has a fixed point in X. Moreover, if α > 1, then the

fixed point of f is unique.

Proof. It follows by taking g = I in Theorem 3.1.

�

Theorem 3.6. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Suppose the mappings S, T : X → X satisfy the following conditions:

d(T (Sx), Sx) +
k

s
d(T (Sx), x) ≥ αd(Sx, x) (3.3)

and

d(S(Tx), Tx) +
k

s
d(S(Tx), x) ≥ βd(Tx, x) (3.4)

for all x ∈ X, where α, β, k are nonnegative real numbers with α > s+ (1 + s)k

and β > s+ (1 + s)k. If S and T are continuous and surjective, then S and T

have a common fixed point in X.

Proof. Let x0 ∈ X be arbitrary and choose x1 ∈ X such that x0 = Tx1. This

is possible since T is surjective. Since S is also surjective, there exists x2 ∈ X
such that x1 = Sx2. Continuing this process, we can construct a sequence (xn)

in X such that x2n = Tx2n+1 and x2n−1 = Sx2n for all n ∈ N.

Using (3.3), we have for n ∈ N ∪ {0}

d(T (Sx2n+2), Sx2n+2) +
k

s
d(T (Sx2n+2), x2n+2) ≥ αd(Sx2n+2, x2n+2)

which implies that

d(x2n, x2n+1) +
k

s
d(x2n, x2n+2) ≥ αd(x2n+1, x2n+2).

Hence, we have

αd(x2n+1, x2n+2) ≤ d(x2n, x2n+1) + kd(x2n, x2n+1) + kd(x2n+1, x2n+2).

Therefore,

d(x2n+1, x2n+2) ≤ 1 + k

α− k
d(x2n, x2n+1). (3.5)

Using (3.4) and by an argument similar to that used above, we obtain that

d(x2n, x2n+1) ≤ 1 + k

β − k
d(x2n−1, x2n). (3.6)
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Let λ = max
{

1+k
α−k ,

1+k
β−k

}
. It is easy to see that λ ∈ (0, 1s ).

Combining (3.5) and (3.6), we get

d(xn, xn+1) ≤ λd(xn−1, xn) (3.7)

for all n ≥ 1. By repeated application of (3.7), we obtain

d(xn, xn+1) ≤ λnd(x0, x1).

By an argument similar to that used in Theorem 3.1, it follows that (xn) is

a Cauchy sequence in X. Since X is complete, there exists u ∈ X such that

xn → u as n → ∞. Now, x2n+1 → u and x2n → u as n → ∞. The continuity

of S and T imply that Tx2n+1 → Tu and Sx2n → Su as n→∞ i.e., x2n → Tu

and x2n−1 → Su as n→∞. The uniqueness of limit yields that u = Su = Tu.

Hence, u is a common fixed point of S and T . �

Corollary 3.7. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Let T : X → X be a continuous surjective mapping such that

d(T 2x, Tx) +
k

s
d(T 2x, x) ≥ αd(Tx, x)

for all x ∈ X, where α, k are nonnegative real numbers with α > s+ (1 + s)k.

Then T has a fixed point in X.

Proof. It follows from Theorem 3.6 by taking S = T and β = α.

�

Corollary 3.8. Let (X, d) be a complete b-metric space with the coefficient

s ≥ 1. Let T : X → X be a continuous surjective mapping such that

d(T 2x, Tx) ≥ αd(Tx, x)

for all x ∈ X, where α > s is a constant. Then T has a fixed point in X.

Proof. It follows from Theorem 3.6 by taking S = T and β = α, k = 0.

�

We conclude with some examples.

Example 3.9. Let X = [0, 1] and p > 1 be a constant. We define d : X×X →
R+ as

d(x, y) =| x− y |p for all x, y ∈ X.

Then (X, d) is a b-metric space with the coefficient s = 2p−1. Let us define

f, g : X → X as fx = x
3 and gx = x

9 −
x2

27 for all x ∈ X. Then, for every

x, y ∈ X one has d(fx, fy) ≥ 3pd(gx, gy) i.e., the condition (3.1) holds for

α = 3p, β = γ = 0. Thus, we have all the conditions of Theorem 3.1 and 0 ∈ X
is the unique common fixed point of f and g.
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Example 3.10. Let X = [0,∞). We define d : X ×X → R+ as

d(x, y) =| x− y |2 for all x, y ∈ X.

Then (X, d) is a complete b-metric space with the coefficient s = 2. Let us

define S, T : X → X as Sx = 3x and Tx = 4x for all x ∈ X. Then, the

conditions (3.3) and (3.4) hold for α = β = 3 + 3k > s + (1 + s)k, where k is

a nonnegative real number. We see that all the conditions of Theorem 3.6 are

satisfied and 0 ∈ X is a common fixed point of S and T .

4. Scalarization Functions and Fixed Points

Let E be a real Banach space and θ denote the zero element in E. A cone

P is a subset of E such that

(i) P is closed, nonempty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For any cone P ⊆ E, we can define a partial ordering � on E with respect

to P by x � y(equivalently, y � x) if and only if y − x ∈ P . We shall write

x ≺ y (equivalently, y � x) if x � y and x 6= y, while x � y will stand for

y−x ∈ int(P ), where int(P ) denotes the interior of P . Throughout this section,

we suppose that E is a real Banach space, P is a cone in E with int(P ) 6= ∅
and � is a partial ordering on E with respect to P .

Definition 4.1. [15] Let X be a nonempty set. Suppose the mapping d :

X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 4.2. [16] Let X be a nonempty set and E a real Banach space with

cone P . A vector valued function p : X ×X → E is said to be a cone b-metric

function on X with the constant s ≥ 1 if the following conditions are satisfied:

(i) θ � p(x, y) for all x, y ∈ X and p(x, y) = θ if and only if x = y ;

(ii) p(x, y) = p(y, x) for all x, y ∈ X;

(iii) p(x, y) � s (p(x, z) + p(z, y)) for all x, y, z ∈ X.

The pair (X, p) is called a cone b-metric space.
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Definition 4.3. [11, 12, 13] The nonlinear scalarization function ξe : E → R,

where e ∈ int (P ) is defined as follows:

ξe(y) = inf{r ∈ R : y ∈ re− P} for all y ∈ E.

Lemma 4.4. [11, 12, 13] For each r ∈ R and y ∈ E, the following statements

are satisfied:

(i) ξe(y) ≤ r ⇐⇒ y ∈ re− P ,

(ii) ξe(y) > r ⇐⇒ y 6∈ re− P ,

(iii) ξe(y) ≥ r ⇐⇒ y 6∈ re− int (P ),

(iv) ξe(y) < r ⇐⇒ y ∈ re− int (P ),

(v) ξe(·) is positively homogeneous and continuous on E,

(vi) if y1 ∈ y2 + P (i.e. y2 � y1), then ξe(y2) ≤ ξe(y1),

(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ E.

Remark 4.5. [13]

(a) Clearly ξe(θ) = 0.

(b) It is worth mentioning that the reverse statement of (vi) in Lemma 4.4

does not hold in general.

Theorem 4.6. [13] Let (X, p) be a cone b-metric space. Then, dp : X ×X →
[0,∞) defined by dp = ξe ◦ p is a b-metric.

Definition 4.7. [16] Let (X, p) be a cone b-metric space, x ∈ X and (xn) be

a sequence in X. Then

(i) (xn) converges to x whenever, for every c ∈ E with θ � c, there is a

natural number n0 such that for all n > n0, p(xn, x) � c. We denote

this by lim
n→∞

xn = x or xn → x (n→∞);

(ii) (xn) is a Cauchy sequence whenever, for every c ∈ E with θ � c, there

is a natural number n0 such that for all n,m > n0, p(xn, xm)� c;

(iii) (X, p) is a complete cone b-metric space if every Cauchy sequence is

convergent.

Definition 4.8. Let (X, p) be a cone b-metric space and let T : X → X be a

given mapping. We say that T is continuous at x0 ∈ X if for every sequence

(xn) in X, we have xn → x0 as n → ∞ then Txn → Tx0 as n → ∞. If T is

continuous at each point x0 ∈ X, then we say that T is continuous on X.

Theorem 4.9. [13] Let (X, p) be a cone b-metric space, x ∈ X and (xn) be a

sequence in X. Set dp = ξe ◦ p. Then the following statements hold:

(i) (xn) converges to x in cone b-metric space (X, p) if and only if dp(xn, x)→
0 as n→∞,

(ii) (xn) is a Cauchy sequence in cone b-metric space (X, p) if and only if

(xn) is a Cauchy sequence in (X, dp),
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(iii) (X, p) is a complete cone b-metric space if and only if (X, dp) is a

complete b-metric space.

Theorem 4.10. Let (X, p) be a complete cone b-metric space with the co-

efficient s ≥ 1. Suppose the mappings S, T : X → X satisfy the following

conditions:

p(T (Sx), Sx) +
k

s
p(T (Sx), x) � αp(Sx, x) (4.1)

and

p(S(Tx), Tx) +
k

s
p(S(Tx), x) � βp(Tx, x) (4.2)

for all x ∈ X, where α, β, k are nonnegative real numbers with α > s+ (1 + s)k

and β > s+ (1 + s)k. If S and T are continuous and surjective, then S and T

have a common fixed point in X.

Proof. Taking dp = ξe ◦ p, it follows that dp is a b-metric on X. Using The-

orem 4.9, we conclude that (X, dp) is a complete b-metric space and S, T are

continuous on (X, dp). By applying Lemma 4.4, we obtain from (4.1) and (4.2)

that

dp(T (Sx), Sx) +
k

s
dp(T (Sx), x) ≥ αdp(Sx, x)

and

dp(S(Tx), Tx) +
k

s
dp(S(Tx), x) ≥ βdp(Tx, x)

for all x ∈ X, where α, β, k are nonnegative real numbers with α > s+ (1 + s)k

and β > s+ (1 + s)k.

Now, Theorem 3.6 applies to obtain the desired result. �

Following a similar argument as in Theorem 3.1, we can derive the following

theorem.

Theorem 4.11. Let (X, p) be a cone b-metric space with the coefficient s ≥ 1.

Suppose the mappings f, g : X → X satisfy

p(fx, fy) � αp(gx, gy) + β p(fx, gx) + γ p(fy, gy)

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α+β+γ > s.

Assume the following hypotheses:

(i) β < 1 and α 6= 0, (ii) g(X) ⊆ f(X), (iii) f(X) or g(X) is complete.

Then f and g have a point of coincidence in X. Moreover, if α > 1, then the

point of coincidence is unique. If f and g are weakly compatible and α > 1,

then f and g have a unique common fixed point in X.

Remark 4.12. We observe that the last theorem cannot be derived by the

techniques using scalarization function. In fact, Lemma 4.4 does not imply

that

ξe(p(fx, fy)) ≥ α ξe(p(gx, gy)) + β ξe(p(fx, gx)) + γ ξe(p(fy, gy))
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for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α+β+γ > s.

or, equivalently,

dp(fx, fy) ≥ αdp(gx, gy) + β dp(fx, gx) + γ dp(fy, gy).

for all x, y ∈ X, where α, β, γ are nonnegative real numbers with α+β+γ > s.
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