[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.7508/ijmsi.2016.01.008 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 11, No. 1 (2016), pp 85-100
DOLI: 10.7508/ijmsi.2016.01.008

On («, f)—Linear Connectivity

Fatemah Ayatollah Zadeh Shirazi®*, Arezoo Hosseini®

“Faculty of Mathematics, Statistics and Computer Science, College of
Science, University of Tehran, Enghelab Ave., Tehran, Iran.
bFarhangian University (Pardis Nasibe-Shahid Sherafat branch), Tehran,
P.O.Box 19396-14464, Iran.

E-mail: fatemah@khayam.ut.ac.ir
E-mail: math.hosseini@gmail.com
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1. INTRODUCTION

Classifying the class of all topological spaces is one of the main problems in
topology. For instance in algebraic topology one of the main results of intro-
ducing fundamental groups and homological groups is classifying topological
spaces.

In this paper we introduce and demonstrate a method to classify the class of
all topological spaces, and in particular the class of all linear connected spaces.
A topological space X is called path connected (linear connected) if for ev-

ery x,y € X there exists a path in X from z to y ( i.e, a continuous map
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f:10,1] = X such that f(0) =z and f(1) =y [4]).
The following questions are asked due to the properties paths from z to y.
(1) How much paths from z to y are similar to “one to one” path?
(2) For nonzero cardinal number 6, is it possible to have“ 6 to one” path
from x to y?
(3) How many “ to one” paths are there from z to y?
(4) How big could be a collection of “6 to one” paths from x to y which
are “enough separated”?

These questions help to classify the class of all linear connected spaces.

In § 2 main tools, a—arcs and S—separated families are introduced. In § 3 we
define (a, 8)—linear connectivity and we have our first and main steps, also § 4
is designed for explanation more details of («, 8)—linear connectivity. Finally
in § 5 the concept of (a, §)—linear connectivity as a classifying tool for class of
all linear connected spaces is shown in detail.

We assume ZFC+CH, moreover N denotes the set of natural numbers, R de-
notes the set of real numbers, w = card(N) is the first infinite cardinal number,
and ¢ = card(R) is the first uncountable cardinal number.

2. a—ARCS AND S—SEPARATED FAMILIES

In this section, a—arcs and S—separated families are introduced. We introduce
a—arcs in order to work on the second question of Introduction. S—separated
families in accompanying with a—arcs work on question (4) of Introduction.
These are our main tools for («, f)—linear connectivity approach.

Definition 2.1. In topological space X for nonzero cardinal number «, a
continuous map f : [0,1] — X is called an a—arc (between a = f(0) and
b= f(1)) if for any t € [0,1] we have card(f~1(f(t)) — {t}) < «

As we see in the following remark, 1—arcs are well-known. In the literature
1—arcs are known as arcs [5, page 29].

Remark 2.2. A continuous function f : [0,1] — X is an 1—arc if and only if it
is one to one. In addition any continuous function f : [0,1] — X is an a—arc
for any a > c.

EXAMPLE 2.3. For n < w consider f :[0,1] — C with

1
fl) =3 gee?mltDe=h) Lyt ge [k Ml ke {l,...,n},
n+1
(n+2)z - (n+1) ve 1]
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Then f : [0,1] — C is an a—arc if and only if & > n+ 1 (In Figure 1 we see

£10.1) = {f(z) -z € [0.1]}).
0

(Figure 1)

J—

-1

Convention In the rest of this section by f, we denote constructed f : [0,1] —
C in Example 2.3.

2n,+1

EXAMPLE 2.4. Consider f : [0,1] — C with £(0) = 0, f(z) = =& 2083 g,
% € [57, 5] and n € w. Then f:[0,1] — C is an a—arc if and only if a > w
(In Figure 2 we see f[0,1] = {f(z): z € [0,1]} =: X).

o O

y 1 1 1 )
0 3 i 3
(Figure 2)

Definition 2.5. Let X be a topological space and 8 # 0 a cardinal number.
A collection T' of maps f :[0,1] - X with f(0) = a and f(1) =, is called a
B—separated family of maps between a and b if for all g,h € I with g # h we
have card(g[0, 1] N k[0, 1] — {a,b}) < B.

EXAMPLE 2.6. In Definition 2.5 for 0 < 8 < ¢:

e If X = R, then every [—separated family of continuous maps
f:10,1] = R between —1 and 1 has at most one element.
o If X = C, then every [—separated family of continuous maps
f 00,1 — St = {e? : 6 € [0,27]}(C C) between —1 and 1 has
at most two element. In addition there exists a S—separated family
continuous maps between —1 and 1 with two elements.
For 8 > ¢, T is a f—separated family of continuous maps f : [0,1] — X between
a and b if and only if for any f € T', f : [0,1] — X is a continuous map with
f(0) =a and f(1) = b (note: the set of all continuous maps f : [0,1] — X for
X =Ror X =S with f(0) =1 and f(1) = —1 has cardinal number c).

EXAMPLE 2.7. With the same assumptions as in Example 2.4, let X = f[0, 1],
then for each 8 < w, {f} is the unique S—separated family of continuous maps
g:[0,1] = X between 0 and 1 containing f.
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3. (a, B)—LINEAR CONNECTIVITY

Now we are ready to introduce (¢, f)—linear connectivity. For a nonzero car-
dinal number 8, and for a S—separated family of maps between a and b in a
topological space X like T, since T' € X% card(I") < card(X)¢, we have the
following definition.

Definition 3.1. Let X be a linear connected topological space, a,b € X,
and «, 8 be nonzero cardinal numbers. Then by ch(a 8) (a,b) or simply
Drc(a,p)(a,b) we mean:

sup({card(T") : T"is a 8 — separated family of o« — arcs between a and b})

and call it (o, 8)—linear connection degree of ¢ and b [1, Definition 1].

EXAMPLE 3.2. Suppose X = {|z|+isinz : € R} (Figure 3) with the induced
topology of C.

(Figure 3)

For nonzero cardinal numbers «, 3, also n,m € N U {0} with n # m and
k = |n — m| we have:

1 0<B<k
Dro(a,p)(nm,mn) = Drc(a,p(0,kr) = ¢ 2 E<pB<c
c 8 >c

Moreover if « + iy, 2’ +iy’ € X and (x,y) # (2, y’) (with z,y,2',y" € R) such
that nm <z < (n+1)m <mn < 2’ < (m+1)7, then Dyo(q,p)(x+iy, 2’ +iy') =
Drc(a,p)(nm, (m + 1)7).

Proof. Since Dy¢(a,p)(nm, mm) = Drc(a,p)(mm,nr), we may assume nm < mm
and m = n+k. Note that f : [0,1] — X such that f(z) = nm+knz+isin(nr+
krx) and ¢ : [0,1] — X such that g(z) = nm + kmz + —isin(nm + krz) are two
1—arcs between nm and mm. Moreover f[0,1]Ng[0, 1] = {n7, (n+1)7, ..., mm},
Thus for 8 > k, {f, g} is a S—separated family of continuous 1—arcs (so a—arcs)
between nm and mm. Therefore:

1 B<k

DLC(a,,@)(nﬂ-amﬂ-) = DLC(a,ﬂ)(07kﬂ-) > { 9 ﬂ >k (*)

Now we have the following cases:
Case 1: 8 < k. If fi,01 : [0,1] — X are two continuous maps with f;(0) =
91(0) = nm and fi1(1) = g1(1) = mm, then f1[0,1] N ¢;1]0,1] C {nm, (n +
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Dx,...,mx}. So card((f1[0,1]Ng1[0,1]) — {mm,n7w}) > k—1 > B, which leads
to the fact that any fg—separated family of continuous maps between nm and
mm has at most 1 element, i.e. Dpc(q,8)(nm, mm) < 1. Using (*) we have:

VB < k DLc(aﬁ)(mr,mﬂ) =1.

Case 2: 8 > c¢. Consider 1—arc f : [0,1] — X with f(z) = nw + krz +
isin(nm+ kmnz) in the beginning of proof. The set ® := {fo¢p: ¢ :[0,1] — [0, 1]
is a homeomorphism with ¢(0) = 0 and ¢(1) = 1} is a collection of 1—arcs
between nm and mm moreover it has cardinality c. For every f1,¢g1 € ® we have
card(f1[0,1] N g1[0,1]) < card(X) = ¢ < B. Therefore Dyc(qa, gy (nm, mm) >
card(®) = c. Since the set of all continuous functions from [0,1] to X has
cardinality ¢, Dpc(qa,g)(nm, mm) < c. Thus we have:

VB >c¢ Diroap)(nm,mnr)=c.

Case 3: k < g < c. If hy, hy and hg are distinct elements of a S—separated
family of a—arcs between nm and mm, then there exists zg € (nw, mm) such
that for all j € {1,2,3}, {x+isinx : z € [nm,x0]} C h;[0,1] or {x—isinz:z €
[nm, o]} C hj[0,1]. By Pigeonhole Principle there exist k,j € {1,2,3} with
k # j such that {x+isinz : € [nm, 20]} C h;[0,1]Nh[0,1] or {x—isinz : x €
[nm, z0]} € h;[0,1] N hgl0,1]. Therefore we have ¢ < card(hg[0,1] N A;[0,1] —
{nm,mn}) < B, which is a contradiction. Thus every S—separated family of
a—arcs between n and m7 has at most two elements, and D¢ (q,5)(nm, mm) <
2, using (*) we have Dy (q,g)(nm, mm) = 2. O

Definition 3.3. For nonzero cardinal numbers «, 3, a linear connected topo-
logical space X is called («, 3)—linear connected if for any distinct a,b € X we

have ch(aﬁ) (a,b) > 1.

Lemma 3.4. Let X be a topological space and a € X. Then there exists a
mazimal («, §)—linear connected subspace of X containing a.

Proof. Let T = {M C X : a € M and M is («, 8)—linear connected subspace
of X}. We observe that {a} € T" and T" # @. Suppose that (My)rea is a
nonempty chain in (', C). For ¢,d € U M), with ¢ # d there exist A\j, Ao € A

AEA
such that ¢ € M)y, and d € M), with out any less of generality. We may

suppose My, C My,. Therefore ¢,d € M,,. Since M), is («, )—linear con-

nected, D32, 5 (e,d) > 1. By DAt i (e,d) > Dyo?, 5 (c.d). We have
Dg@?ﬁg{f (¢,d) > 1, so U M,y is (a, )—linear connected and U My €T is

AEA AEA
an upper bounded of chain (My) e in (T, C). By Zorn’s Lemma, (T, C) has

a maximal element which is a maximal («, 8)—linear connected subspace of X
too. (]
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ExampLE 3.5. In Example 3.2, for 1 < 8 < w, the collection of all maximal
(o, B)—linear connected subspaces of X is {{x+iy € X : kr < |z| < (k+0)7} :
k € w}. Thus maximal (a, 8)—linear connected subspaces of X are not disjoint.
Moreover if = is the collection of all maximal («, 8)—linear connected subspace
of X containing a + ib(€ X), then:

E={{rztiye X krn<|z| < (k+0)r} :k>0,0<|a|] —kr < pr}.

Therefore maximal («, 3)—linear connected subspace of X containing 0 is unique
(ie,, {z+iy € X : |z| < pr}), and there exists two («,5)—linear con-
nected subspace of X containing 7w (ie., {x +iy € X : |z|] < fr} and
{r+iye X :n<|z| < (B+ D)7}).

In addition X is («, §)—linear connected for 8 > w.

EXAMPLE 3.6. For two point set space X = {a,b} with topology {X, @}, for
nonzero cardinal numbers «, 8 we have:

(1) for a < ¢ there is not any a—arc between a and b since if f : [0,1] - X
is continuous with f(0) = a and f(1) = b, then f~1(a)U f~1(b) = [0,1]
and therefore card((f~1(£(0))—{0HU(f~1(f(1))—{1})) = card(0,1) =
¢ which shows card(f~1(f(0)) — {0}) = c or card(f~1(f(1)) - {1}) = ¢
and f is not an a—arc.

(2) for a > ¢, f1, f2:[0,1] = X with:

hio ={

are two av—arcs between a and b moreover: card((f1[0,1] N f2[0,1]) —
{a,b}) =0 < B and {fi1, fo} is a f—separated family of a—arcs between
a and b.

a rz=0 o) = a 0<z<1
b 0<z<1 ° Y71 b a=1

Thus:
0 a<c
Dro(a,p)(a,b) = { 9 a>ec
which shows:

(1) for a < ¢, maximal (o, 8)—linear connected subspaces of X are {a}
and {b}.
(2) for a > ¢, X is (a, f)—linear connected.

Note 3.7. (2¢,2°) —linear connected maximal subspaces of X are linear con-
nected component of X.

Now we study the product of two («, §)—linear conectivity.

Lemma 3.8. In linear connected topological spaces X, Y, for nonzero cardinal
numbers aq, g, b1, P02 and a,c € X, b,d € Y with (a,b) # (¢,d) we have:

1. If f : [0,1] — X is an ay—arc and g : [0,1] — X is an as—arc, then
fxg:[0,1] > X xY with f x g(z,y) = (f(x),9(y)) ((x,y) € X xY) is a
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min(ay, ag)—arc (for this item see [1, Theorem 5], here we present a similar
but more clear proof).

2. IfT is a By—separated family of maps between a, ¢ and A is a So—separated
family of maps between b, d, such that ¢ : T' — A is an injection, then
{f xo(f): feT}isa (f1B2+ 261 + 262 + 2)—separated family of maps
between (a,b) and (¢, d).

3. IfT is a B1—separated family of maps between a, ¢ and A is a So—separated
family of maps between b, d, such that v : A — T is an injection, then
{p(h) x h : h € A} is a (B1B2 + 261 + 282 + 2)—separated family of maps
between (a,b) and (c,d).

4. The following inequality holds:

Di{C(al,ﬁl) (a, C)DEC(OLQ-ﬂﬂ (b,d) < ng(}rfnin(al,a2),(5152+2ﬂ1+2ﬁ2+2)) ((a,b), (c,d)).
In particular for infinite 51, B2 the inequality

Di(C(ozl,,Bl) (a’v C)ch(az,ﬁg)(b7 d) < ng({nin(al’a2),maX(B17B2)) ((a’v b)7 (C’ d))
holds.

Proof. 1. Suppose f :[0,1] — X is an ay—arc and g : [0,1] — X is an ay—arc.
For every t € [0, 1] we have

(f x9)H(f x 9)(®) = (f x 9) 7" (F(1),9(t)) S FH(F()) N g™ (g(t))
which leads to
card((f x g)~'((f x 9)(t) — {t}))
< card((fH(F(1) — {th) N (g™ (9(1) — {t}))
< min(card(F(f(2)) — {£}), card(g ™~ (g(t)) — {t}))
< min(ay, az)

which leads to the desired result.
2. Let f,g € " and f # g, then:

(f x @)[0,1] N (o(f) x ¢(9))[0,1] < (f[0,1] N g[0,1]) x (w(f)[0, 1] N (g)[0,1]).
Since ¢ is injective and f # g, then ¢(f) # ©(g). Now we have
card((f x 9)[0,1] N (¢(f) x ¢(9))[0,1])
< card((f[0,1] N g[0,1]) x (¢(f)[0,1] N (9)[0, 1]))
< (B1+2)(B2+2)
which leads to

card(((f x 9)[0,1]N (e (f) x »(9))[0,1]) = {(a, b), (¢, d)}) < B1B2+2(B1+ B2) +2.

3. Use a similar method described in (2).
4. Use (2) and (3) and the fact that there exists an injection ¢ : I' — A or an
injection ¢ : A — T |
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Theorem 3.9. For nonzero cardinal numbers «aq,a9,B1,82 if X s
(a1, B1)—linear connected and Y is (ag, B2)—linear connected, then X XY s
(min(a1, ag), (8182 + 261 + 202 + 2))—linear connected, in particular if at least
one of f1 or Ps is infinite, then X x Y is (min(aq, ag), max(fB1, 82))—linear
connected.

Proof. Use Lemma 3.8. O

4. ACCEPTABILITY WITH RESPECT TO (a, f3)

It is well-known that the collection of all maximal linear connected subspaces
of a topological space X is a partition of X and every point a € X belongs
to a unique maximal linear connected subspace of X. Regarding Lemma 3.4
in the topological space X every a € X belongs to a maximal («, 3)—linear
connected subspace of X. By Example 3.5 we see that there are examples in
which the maximal («, 8)—linear connected subspace of X containing a is not
unique. In this section we want to have a glance to the topological spaces in
which maximal («, §)—linear connected subspaces are unique.

Lemma 4.1. For nonzero cardinal numbers o and B in the topological X the
following assertions are equivalent:

o for every a € X there exists a unique mazimal («, §)—linear connected
subspace of X.

e The collection of all mazimal («, 8)—linear connected subspaces of X
s a partition of X.

Proof. Use Lemma 3.4. |

Definition 4.2. The topological space X is called acceptable with respect to
(o, B), if maximal (v, B)—linear connected subspaces of X make a partition of
X.

If X is acceptable with respect to (a, ), then we call its maximal (a, 8)—linear
connected subspaces, the («, 5)—linear connected components of X.

Remark 4.3.

(1) In Example 3.2 for 1 < 8 < w and nonzero «, X is not acceptable with
respect to («, B) (use notes in Example 3.5).
(2) In Example 3.6 for any nonzero « and 3, X is acceptable with respect

to (a, B).

Remark 4.4. Using [1, Theorem 6], in linear connected topological spaces X
for nonzero cardinal numbers «, a; for all a,b,d € X we have:

DLc(a,2C)(av b)DLc(al,Qﬂ)(ba d) < DLc(a+a1+1,26) ((1, d),
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and therefore for infinite cardinal number o we have:
DLc(a,2‘~') (a7 b)DLc(a,QC) (b7 d) S DLc(a,ZC) (au d)

Remark 4.5. Using [1, Theorem 2] in linear connected topological space X if
Y is a linear connected subspace of X and a,b € Y, then for nonzero cardinal
numbers «, 8 we have:

D} (a5 (@:0) < DEoap (a:b).

Lemma 4.6. For infinite cardinal number « every topological space X is ac-
ceptable with respect to («a, 2°).

Proof. Let A, B be maximal («a,2°)—linear connected subspaces of X with
d € AN B using Remark 4.4 and Remark 4.5 for all a € A and b € B we have:

D?g(g,%) (av b) > DIZL}EJ(E,ZC) (a, d)szL:J(g,zc) (dv b)
> D?c(a,%)(a’ d)Dgc(a,QC)(d’ b) >4

Thus AU B is (a, 2¢)—linear connected, which leads to A = B (since A and B
are maximal (a, 2¢)—linear connected subspaces of X). O

Definition 4.7. For nonzero cardinal numbers «, 8 we call topological space
X locally (o, 8)—linear connected in a € X if for every open neighborhood U
of a there exists an («, 8)—linear connected open subset V' of X such that a €
V CU. We call X locally («, 8)—linear connected if it is locally (a, 8)—linear
connected in every x € X.

Theorem 4.8. If X is acceptable with respect to («,8) and it is locally
(a, B)—linear connected, then (a,)—linear connected components of X are
open.

Proof. Suppose a € X and M is («,8)—linear connected components of X
containing a. Since X is locally («, 8)—linear connected, there exists an open
(o, B)—linear connected neighborhood of a like U(C X). We set

:={L C X : Lis(a,p) — linear connectedand U C L C X }.

Using Zorn’s Lemma (I', C) has a maximal element like L. L is a maximal
(c, B)—linear connected subspace of X. Since a € MNL, L and M are maximal
(cr, B)—linear connected subspaces of X, and X is acceptable with respect to
(a,8), L=M. By a € U C M, ais an interior point of M. O

5. A TABLE

In this section we bring a table which shows how («a, 8)—linear connectivity
approach classify the class of all linear connected spaces.
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Table 5.1. For nonzero cardinal numbers «, 8 if LC(«, ) denotes the class
of all (a, 8)—linear connected spaces., then we have the following table:

£Cc(,1)c  ---cLC(l,n)c--- C LCO(L,w) CLC(l,e)C LC(1,2°
In N N In N

In N N In N
L£LC(m,1)c ---CcLC(m,n)C--- C LC(m,w) CLC(m,c)C LC(m,2°
In N N In N

N N N IN N
LC(w,1)c ---CLC(w,n)C-+ C LC(ww) CLC(w,c)C LC(w,2°
In N N IN N
LC(c,1)c - CLC(e,n)C - C LC(c,w) CLC(c,e) T LC(c,2°)
N N N n N
LC(2°1)Cc ---CLC(2%n)C--- C LCO(2%w) CLC(2%c)C LC(2°2°

The class of all linear connected spaces

Where “C” means strict inclusion.

Proof. Consider the following counterexamples:

Counterexample 1. Let @ > 0,0 < n < w and X = {|z|+ isinz : 0 <
x < (n+ 1)7}, then X is an (a,n + 1)—linear connected space, but isn’t an
(o, n)—linear connected space.

Counterexample 2. In the Example 3.2 for « > 0, X is an (o, w)—linear
connected space but isn’t an («,n)—linear connected space.
Counterexample 3. Let X = {|z| +i|z[sin(1): -1 <z <1,z # 0} U{0} (a
schema has been presented in Figure 4) with the induced topology of C.

LJ

The topological space X is an («, ¢)—linear connected space, but that isn’t an
(o, w)—linear connected space.

Counterexample 4. In the Example 2.4, let @ > 0, then X is an («, 2¢)—linear
connected space, moreover X is not an («, ¢)—linear connected space.
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Using Counterexamples 1, 2, 3, 4 we have the following diagrams which com-
plete the proof.

LC(a,?2) LC(a,n+1)
£C(ar1) (Counterexample 1) (Counterexample 1)
LC (v, w)

(Counterexample 2)

LC (e, c)

(Counterexample 3)

LC(a,2°)
(Counterexample 4)

In the above diagram for nonzero cardinal number «
regarding mentioned Counterexample we may find

a corresponding topological space.

And the following diagram:

LC(2°,8)

(Counterexample 4)

LC(c, )

which indicates that regarding Counterexample 4, there exists a topological
space X such that X € LC(2¢, 8) — LC(c, B). O

6. FINAL NOTE

6.1. Why should we deal with («,)—linear connectivity? As it has
been mentioned in the first paragraph of the abstract of [3] “Similarity concept,
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finding the resemblance or classifying some groups of objects and study their
common properties has been the interest of many researchers.”, also one may
try to know exactly the objects of a category (like [2]). In this text we tried to
introduce “(a, §)—linear connectivity concept” as a tool to classify the class of
all linear connected topological spaces. Here we want to show how we reach to
(a, B)—linear connectivity approach. The following is a real story (about one
of the authors).

When I was an undergraduate student, for the first time saw infinite bloom
(Figure 5)): that subspace of the Euclidean space R? which consists of all
closed line segments joining a = (2,1) to a rational point in x—axis. This
infinite bloom is linear connected and it is not locally connected in any point
except a, in fact it is locally linear connected in a. One of the most well known
exercises in this approach is this: Find a linear connected set X which is not
locally linear connected in any point (a schema of my answer is in Figure 6). So,
I decided to classify linear connected spaces which are locally linear connected
in just one point, and they are not locally connected in any other points. The
result was a a collection of examples Figures 8, 9, 10, and 11.

« a4a3 a2 al
P - .. b4b3 b2 bl
(Figure 5) (Figure 6) (Figure 7)

)

(Figure 8) (Figure 9) (Figure 10)

(Figure 11)

Where:
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e Figure 5 is a presentation of infinite bloom.

e Figure 6 is a presentation of my answer to: Find a linear connected set
X which is not locally linear connected in any point.

e Figure 7 is a presentation of a subset of R? which is linear connected
and locally connected in just countable points.

e Figure 8 proposes to select a dense subset of the graph of a “good func-
tion” with dense complement, instead of choosing rational (irrational)
numbers of x—axis in Figure 5.

e Figure 9 is a more generalization of Figure 8.

e Figure 10 uses arcs instead of lines in previous Figures.

e Figure 11 presents a generalization of Figure 5.

However these spaces may be more complicated (Figure 12). Now the main
question is: “Suppose X is a linear connected subspace of plane with more than
one point which is locally linear connected in just one point like v and X is not
locally connected in every z € X \ {u}.Does X has a subspace homeomorph
with infinite bloom?” The result of working in this question was a join lecture
in undergraduate math students’ seminar. But still the question was unsolved,
however a new concept has been introduced, I was hopeful that this concept
help us to find the answer. This concept was “(«, 3)—linear connection degree”.
Our idea about the relation between the concept of («, 5)—linear connection
degree and our question was true, one may find this relation in next subsection.
As a matter of fact Theorem 6.2 guaranties the existance of a subspace similar
to Figure 13 in our target subspaces of R2.

(Figure 12) (Figure 13)

6.2. A Theorem. Let’s generalize the notion of ch(a ﬂ)(a,b) from linear
connected space X to arbitrary topological space X.

Definition 6.1. In topological space X, for a,b € X and nonzero cardinal
numbers «, 3, suppose L, is linear connected component of X which contains
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a, and C, is connected component of X containing a. Define:

Lg
DLC(aﬂ)(a, b) be L,,
ch*(aﬁ)(aa b):=4 -1 beCy\ Ly,
—2 otherwise .

ch(%ﬁ)(a, b) (or simply Dyc(a,p)(a,b)) is called (a, 3)—linear connection de-
gree of a and b.

Using Definition 6.1 we recall the following theorem.

Theorem 6.2 ([1, Theorem 4]). Let S C R?, 3 be a nonzero cardinal number,
a € S and f :[0,1] — R? be a continuous 1-1 map such that a ¢ f[0,1],
f@0), f(1) € S and:

o for each b,d € f[0,1]NS with b # d we have D§0(1,5)(bv d) > 1 and

Dy s (bid) <1,
o for each countable subset K of [0,1], f([0,1]\ K)NS is dense in f[0,1],
e if for each b € f]0,1]NS, g : [0,1] = S be a continuous 1-1 map such
that g(1) = b and ¢,(0) = a, then |J{gs(0,1) : b € f(0,1) NS} is a
subset of the enterior of the simple closed curve f[0,1] U gs)[0,1] U

g0, 1].
Then there exists L C S such that:

e a € L and L is linear connected,

o for each b € L\ {a}, L is not locally connected in b,

e (S\ L)N f[0,1] is countable and for each countable subset K of [0, 1],
F([0,1]\ K) N L is dense in f[0,1].

6.3. Some arising problems. Now let’s generalize Theorem 6.2 through the
following example. Here we bring a subset of R® which is a generalization of
infinite bloom. Let X be that subspace of R? consisting of closed line segments
joining @ = (0,0,1) to an element of {(z,y,0) : 22 +y?> < 1,(z,y) € Q x Q}.
Then X is a linear connected space it is not locally linear connected in any
point but a (Figure 14). However one may consider more complicated examples
(Figure 15).
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i

(Figure 14) | (Figure 15)

In the following for n € N and linear normed space E let D} := {z € E" :
|z|| <1} and S} := {x € D™ : ||z]| = 1}.
Regarding Theorem 6.2, and above descriptions the following problem occurs:

Problem 6.3. Find all normed linear space E, nonzero cardinal numbers «, 8
and n € N such that the following statement is valid:

Let S C E™! and f : D% — E"™! be a continuous 1-1 map such that
a¢ f(D), f(SE™) C S, and:

e for each b,d € f(D%) NS with b # d we have D‘fc(a,m(b, d) > 1 and

D‘j\c{(ﬁ (b, d) <1,

e for each countable subset K of D%, f(D™\ K)NS is dense in f(D}%),

e if for each b € f(DE)NS, gy : [0,1] — S be a continuous a—arc such
that g,(1) = b and g5(0) = a, then M := (J{g[0,1]: b€ f(Sp "} U
f(D%) is a nowhere-dense subset of E™"*! such that E"*!\ M has
exactly two connected component, one bounded and the other un-
bounded, (J{g5(0,1) : b € f(D% \ SE~') NS} is a subset of bounded
component of E"T1\ M.

Then there exists £ C S (£ # {a}) such that:

e a € L and L is linear connected,
e for each b € £\ {a}, £ is not locally connected in b.

Using Theorem 6.2, E = R, n = 2 and o = 1 is one of the answers of Prob-
lem 6.3.
Considering Tabel 5.1, we have the following problem:

Problem 6.4. Suppose 0 < a < w and 8 > 0. Find an (a™,)—linear
a,

connected space X which is not («, 8)—linear connected space.

However solving the following problem may be useful to find answers for Prob-
lems 6.3 and 6.4.

Problem 6.5. Let f : [0,1] — X be an a™—arc. When there exists a—arc
g:[0,1] X with £(0) = g(0), £(1) = g(1) and g[0,1] C [0, 1]?
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