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1. INTRODUCTION

Let H be a real Hilbert space with inner product (.,.) and norm |[|.||. Recall
that a mapping T with domain D(T') and range R(T') in H is called nonexpan-
sive iff for all z,y € D(T),

[Tz =Tyl < [l —yl|.

F(T) denotes the set of fixed points of T. Moreover, H satisfies the Opial’s
condition [6], if for any sequence {x,} with x,, — z, the inequality

liminf||z,, — z|| < liminf|jz, — y|,
n— oo n— oo
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holds for every y € H with  # y.
Recall that f is said to be weakly contractive [2] iff for all z,y € D(T),

1f(2) = FWIl < llz = yll = ¢l =y,

for some ¢ : [0,00) — [0,00) is a continuous and strictly increasing function
such that ¢ is positive on (0,00) and ¢(0) = 0. A mapping A is a strongly
positive linear bounded operator on H if there exists a constant 7 > 0 such
that

(Az,x) > 7||z||?, for all z € H.

Moreover, B : C — H is called a—inverse strongly monotone if there exists a
positive real number a > 0 such that for all z,y € C

(Bz — By, —y) > a||Bx — By||.

Let C be a nonempty closed convex subset of H. A : H — H be an inverse
strongly monotone mapping and F': C' x C' — R be a bifunction. The general
equilibrium problem is to find & € C such that for all y € C,

F(Z,y) + (Az,y —z) > 0.

There are several other problems, for example, the complementarity problem,
fixed point problem and optimization problem, which can also be written in
the form of an EP. In other words, the general equilibrium problem system
(GEPS) is an unifying model for several problems arising in physics, engineer-
ing, science, optimization, economics, etc [1, 4].
To study the generalized equilibrium problem, we assume that the bifunction
F satisfies the following conditions:

(A1) F(z,2) =0, for all z € C;

(A2) F is monotone, i.e., F(x,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, limsup,_,,- F(tz+ (1 —t)z,y) < F(z,y);

(A4) foreachz € Cy — F(z,y) is convex and weakly lower semi-continuous.
Recently, Yao and Chen [10] introduced a new iteration for two averaged self
mappings S and T on a closed convex subset C' as follows

9=z € C, .
Tna1 = an + (1= ) Grrgitnray Loieo 2ojmo (ST STV (ST) T~ )2y,
where n > 0 and
o o ST S ifi>j
TV §i—3 T)iTI~ = (ST) 5" = 1.1
(ST)?S™7 v (ST) { (ST)y 17— ifi<j. (1.1)
By improving this idea, Jankaew et al. [5] considered the following iteration:

n n—i

Tpy1 = Oénf(In) + BnTn "‘F’YnW Z Z((ST)jsl—J \/ (ST)iTj—i).’L‘n,
i=0 j=0

(1.2)
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where {a,}, {6n}, {7} C (0,1), ay, + Bn + v = 1, f is a contraction map-
ping on C. They proved that the iteration process (1.2) converges strongly
to common fixed point of the mapping S and T which solves some variational
inequality.

A typical problem is to minimize a quadratic function over the set of the fixed
points of a nonexpansive mappings on a real Hilbert space H:

min %(A:c,x} — h(z)

where A is strongly positive linear bounded operator and h is a potential func-
tion for v f, i. e., h'(z) = «f, for all x € H. In this paper, we consider and
analyze an iterative scheme for finding a common element of the set of solutions
of the general equilibrium problem system (GEPS) and the set of all common
fixed points of two noncommutative nonexpansive self mapping in the frame-
work of a real Hilbert space. The results in this paper generalize and improve
some well known results in Jankaew et al.[5] and others.

In order to prove our main results, we need the following lemmas.

Lemma 1.1. [3] Let C' be a nonempty closed convex subset of H and F :
C x C — R be a bifunction satisfying (Al) — (A4). Then for any r > 0 and
x € H there exists z € C' such that

1
F(z,y)—l—;(y—z,z—x) 207Vy e C.
Further, define
1
T,.xz{zEC’:F(z,y)—F;(y—z,z—x) >0,Vy e C}

forallr >0 and x € H. Then

(a) T, is single-valued;
(b) T, is firmly nonexpansive, i.e., for any x,y € H

||Trx - TryH2 < <Tr33 - TryJU - y>;

(¢) F(T,) = GEP(F);
(d) Tsw = Trxl| < 55| Tsz — [f;

(e) GEP(F) is closed and convex.

Remark 1.2. Tt is clear that for any € H and r > 0, by Lemma 1.1(a), there
exists z € H such that

1
F(z,y)+ —(y—2z,z—x) >0,Vy € H. (1.3)
T
Replacing z with & — rpz in (1.3), we obtain

1
F(z,y)+<wx,yfz>+;(yfz,zfx> ZO,VZ]GH
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Lemma 1.3. [9] Assume {a,} is a sequence of nonnegative numbers such that
Ap+1 S (1 - an)an + 6n7

where {a,} is a sequence in (0,1) and {0,} is a sequence in real number such
that

o0
(i) nh_)n;@an =0, Zan = 00,

n=1
on
(ii) hmsup— <0 or Z|5 | < oo,
n— oo n—=1
Then lim a, = 0.
n—00

Lemma 1.4. [5] Let C be a nonempty bounded closed convex subset of a Hilbert
space H, and let S, T be two nonexpansive mappings of C into itself such that
F(ST)=F(S)NF(T) #0. Let {z,} be a sequence defined as follows:

Ln41 == anf(xn) + ann
n ST]S’ZQ\/ST Tz,
T zz (STYT
and put
An:— STJS’]\/ ST)iTI—"
(n+1(n+2) — ggo (ST) Jon
Then,

limsup  ||[An(x) — STA,(z)|| = 0.

n—oo el

2. ExpLICIT VISCOSITY ITERATIVE ALGORITHM

In this section, we introduce an explicit viscosity iterative algorithm for
finding a common element of the set of solution for an equilibrium problem
system involving a bifunction defined on a closed convex subset and the set of
fixed points for two noncommutative nonexpansive mappings.

Theorem 2.1. Let zg € C, {u,;} C C and C be a nonempty closed convex
subset of a real Hilbert space H, Fyi,Fs, ..., Fy be bifunctions from C x C
to R satisfying (A1) — (A4), Uy, Pq,..., Uy be pu;—inverse strongly monotone
mapping on C, f be a weakly contractive mapping with a function ¢ on H, A
be a strongly positive linear bounded operator with coefficient ¥ such that 5 <
|A|l <1, B be strongly positive linear bounded operator on H with coefficient
B € (0,1] such that ||B|| = 3, S, T be nonexpansive mappings on C, such that
F(ST)=F(TS)=F(T)NF(S) # 0. Let {x,,} be a sequence generated in the
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following manner:

Fy(un1,y) + (V1Zn, Y — Un1) + %(y — Up,1,Un1 — Tn) >0, forally e C
FZ(un,va) + <\112xnvy - un72> + %<y — Unp,2,Un,2 — xn> Z 07 fO’I" all Yy € C

T
Fr(tun e, ¥) + (Pkpn, y — Un k) + %(y — Uk, Un,kg — Tpn) >0, forally e C
Wn = % Z;C:l u’n,i7

Ao = sy oo S (STY SS9 v (ST TI )y,
Tpi1 = anYf(2n) + BuBry + (1 — e,)] — BB — an A)A,,.

where {an} C (0,1), {8} and {en} are the sequences in [0,1) such that &, <
oy and {r,} C (0,00) is a real sequence satisfying the following conditions:

(C1) nh_)rr;oan =0, Zan = 00,

n=1
(C2) nlggoﬁn =0, Zzozl |5n+1 - 5n| < 00,
(C3) Yooty |rnsr —1n| < 00 and linrr_1>i£frn >0and0<b<r, <a<2u; for
1<i<k,
(C4) Zzo:gfn-&-l —en| < 00,
(C5) lim —* = 0.

n—00 Oy

) the sequence {x,} is bounded.

(ii) nli_)rréo||xn+1 — z,| = 0.
) lim | Uz, — O™ || =0. forie{l,2,...,k}.
)

n—
lim ||z, — A,|| = 0.
n— 00

Proof. (i) Without loss of generality, we assume that o, < (1—e,—3,|B|)|| 4]~
Since A, B are two strongly positive bounded linear operator on H, we have

[All = sup{|[(Az, z)| : @ € H, ||z = 1},

|B|| = sup{[(Bz,z)| : € H, ||z| = 1}.
Also, (1 —ep) — 8, B — o, A is positive. Indeed,

(1 —=e)I = BB —ayA)z,z) = (1—¢ep){x,x)— PBn(Br,x) — an(Azx, x)
1= £0 = Ball Bll - awll Al > 0.

Y
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Notice that

”(1 - 5n)I - ﬂnB - anA||
sup{{((1 —ex)I — BB — anA)z,z) : x € H, ||z|| = 1}
= sup{(1 — &, )(z,2) — Bn(Bz,z) — (A, ) : x € H, ||z = 1}

IN

1_5n_6nﬂ_an7

1= Bnf — an?y.

IN

Let Q = Pr(sTynGEP(F:,w,)- 1t is clear that Q(I — A+ vf) is a contraction.
Hence, there exists a unique element z € H such that z = Q(I — A+ ~vf)z.
Let 2* € N, F(ST)GEP(F;,¥;). For any i = 1,2,....k, I —r,V, is a
nonexpansive mapping and ||u, ;—x*|| < ||z, —a*||. Also ||wy,—a*|| < ||zp—z*|.
Thus

[ — 2" = llowyf(zn) + BuBrn + (1 —en)l — BnB — anA)An — 27|
< an|vf(zn) — Az™| + BullBll[|an — 27|
(A —en) = B — anA)l[|[An — 27| + enllz”|
< an | f(@n) = F@)l + anlvf (@) — Az™|| + BuBlzn — ¥
+(1 = Bnf = an¥)llzn — 27| + anllz”|
< anyllzn — 2t = ¢(llzn — 27) + anl[vf(z") — A7
B Blln — || + (1 = Buf — an¥)||n — ™| + an 2"
< (=G =an)lzn — 27| + an((vf (") — Az™| + [|2"])
< max{|x, —z*, M}
Y=
By induction
. o I f(a") — Az
o = )| < max{ley o), LS,

and the sequence {x,, } is bounded and also { f(x, )}, {w,} and {A,,} are bounded.

(i) Note that u, ; can be written as u,; = Ty, i(zn — rpizy,). It follows
from Lemma 1.1 that

||un+1,i - un,%” < ||xn+1 - mn” + 2Mi|rn+1 - Tn|7 (2~1)

where

(I —r )z, — T,

Tn,i

(I —rp )z,

HTT1L+1,i

M; = max{sup{ by sup{||Wiz, | }}

Tn+1
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k
Let M = %ZQMl < 0o. Next, we estimate ||wp+1 — wa |,
i=1
L
[wnt1 — wall < %Z”Un-&-l,i = Unl| < |Zpt1 — Tl + Mlrngr — ol (2.2)
i=1
Now, we prove that lim ||z,41 — 2| = 0. We observe that
n—0o0
||mn+2 - J;71-5—1|| - Ilan+17f(xn+l) + ﬁn+1an+l

(1 —ent1)I = Bnt1 B — any1A)Any1 — an1vf(zn)
—BnBxy, — (1 = en)] = BB — an A)Ay ||

= (1 —ept1)I = Bny1B — ant1A) (A1 — Ay)
H(en = ens1)An + (B = Bug1) BAy + (i — any1) AN}
tan 1Y (f(@ni1) — F(#0)) + (i1 — an)vf(w,)
+Bn1B(Tni1 — Tn) + (Butr — Bn) By ||

< A =ent)] = Brny1 B — anp1 Al Angr — Ayl
+len — ent1lllAnll + 1Br — Brt1 [ Bl Ax|
+on — anp1|[|[AA || + ant1 (| f(@ns1) = flzn)]|
+lantr — an |Vl f (@)l + Bt | Bll|zn+1 — znll
+1Bnt1 = Bull Bllllznl

< (1= Bus1B = an1VAnt1 = Anll + len = ental[|An]
+1B8n = B |BI Al + |an — anga|[|AA,||
+an 1Y Tnt1 = Tnll — anp17([[2nr1 — n|)
Flomir = anY I F (@)l + Bt Bllent1 — 2
+[Bnt1 — Bn|BHxn||

< (1= Bup1B = anaVAnt1 = Anll + len — enpa || An]

+|ﬂn - /Bn+1|BK + K|an - Cyn-‘,—1|

+(ng17 + 5n+1B)”xn+1 — Zp|| = 17| Tng1 — xn”)

where K = sup{maz{[|An || + [lzn ||, y[[f (@) [ + [|AAR[[}, ¥ > 0} < oc.
Let Ay = [|Bn = Bn+1l|BK + Klan — ant1| + [en — enga|[|An], then

H93n+2 - In+1|| < (1 - Bn+1ﬁ_ - O‘n-&-l?)”An-&-l - AnH
17 + Brs1B8)|Tnt1 — n| (2.3)
—n 17| Tng1 — 2al) + An,

From [5], we conclude

4
Ant1 = Al < flwnts = wnll + —= llonts — 27 + [ (24)

n—+3 n+3
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Substituting (2.2) and (2.4) into (2.3), thus

||xn+2 — T < (1- BnJrlB - an+1’7){”$n+1 - an + Mlrppr —rp

4
n—+3

+ [Elby

m”wnﬂ — x|+

+(an1y + ﬂn+15_)”xn+l = 2ol = anp 170 Tnt1 — wal)

+Ay,

for some positive constant M. It follows that

Tns2 = Tnp1ll < (1= anp1(F —90)) 201 — 20|
+M(1 - ﬂnJrlB - an+1’7)"rn+1 - rn‘

_ 4
1- n - Un Y)—— n -z
+(1 = frny1f—a +17)n+3||w +1— 27|
- 4
+(1 = Bny1 — Oén+1’7)n n 3||$*|| +Ag.
By Lemma 1.3,
Jim (|21 — 2l = 0.

(iii) For any 7 € {1,2,...,k},

(2.5)

ftni —2** < (@0 — 2%) = ro(Wim, — V32|
= |lzn — :10*||2 = 2rp Xy — 2", Ux, — Uiz™) + 7“,2L||\I/ixn — \I'la?*HQ
< e — 37*”2 = 7205 — )| Wiz — \Pix*Hza

thus

k
1
lom =217 =113 (i — 21
i=1

k
< 2D M — |
=1
k
< lon — 2|2 = 23 (i — ra) [ Wiy — )2,
=1

(2.6)


http://dx.doi.org/10.7508/ijmsi.2016.01.007
https://ijmsi.ir/article-1-588-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.7508/ijmsi.2016.01.007 ]

An Explicit Viscosity Iterative Algorithm for ... 7

From (2.6),
[2nt1 —2*? = |lon(yf(2n) — Az™) + B B(ayn — z¥)

+((1 —ep) — BnB — anA) (A, — ™) — Enyc*”2

< lan(vf(zn) — Az™) + BpB(x) — 27)
+((1 —ep) — BB — anA)(wy, — ™) + Enyc*H2

< anlvf(@n) — Az*|]® + Bul Bl*|lzn — 2*||
+(1 = BnfB — anY)|[An — &*|* + &5 ||z*|?

< anllyf(an) — Az*|? + B2z — 22
+(1 = Bnf — anY)llwn — =*||* + 5 ||z*|?

< anllyf(n) — Az*|? + BuBllan — ¥
+(1 - 6715 - an’?){Hxn - x*”Q

k
1 " *
*%Zrn@m — ) [ Wiy — iz*)|*} + 7 ||l2*||
i=1
< anllvf(@a) — Az*|]? + [|on — 2|2
_ 1
_(1 — Bnf — O‘n:}/)gzrn(zlﬁ - 7"n)||\pi$n - \I/zx*)||2
i=1
+en||l* ||
and hence
k
(1 =BuB— an)E Y _b(2ui — a)||Vizy, — Tiz®|>
i=1
< anllvf(@n) = Az |? + [|on — 2% = |lzpgs — 2*|* + & 2%
< anllvf(zn) — Ax*H2 F|Zn1 = Tall([|Tne — 2% — |20 — 2*[])
+en x|

Since a,, — 0 and ¢, < «, then ¢, — 0 as n — oco. The inequality (2.5)
implies that

lim ||z, — Uz =0,Vi=1,2,...,k. (2.7)
n—oo

(iv) By Lemma 1.1

i =2 |* < llwn = 271 = llwn = wnall® + 2rllen — wn all[|izn — Tiz|[(2.8)

and hence
k
lwn —2* > = || Zikzl 7 (uni — )12
< w2 llung — 2|
* (|2 1 k 2 (29)
< op—= k” — % 2ui=1 [tn,i — Ta|
+% Zi:l 2rpl|n — ||| Wizn — Wiz
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From (2.9),
Jonsr =212 < anllf(@n) — A + BuBllan — 272
+(1 = BnB = an?)|lwn — 2"|* + 7 [l2"|*
< onllyf(an) — Az|® + Bafllzn — 2|

k
- vo 1
+(1 = BnB — an¥){llwn — 2|2 = 2> lluni — 2
=1

k
1
—&-% 227%”1% — Upi

i=1

[@sn — Cia™||} + ep [l

thus
_ 1F
(1 - ﬁn/B - 0‘7&’7)% ; ||un,i - an2
-~ n n) * n * - n+1 — *
< anllyf(en) — Az*|? + [lo, — 2 |? = ||z ||
k
o) - 1 * *
+(1 — Bnf — O‘n'Y)EZZ"onn - un,iH”\I]i:En - ¥z ” + E%HQC ”2
i=1
< anllyf(@n) — AP + [zni1 — 2ol (@na — 2| = 20 — 2*]))
k
o) - 1 * *
H(L = nf = an?) ¢ > 2rllzn = tn il | Wiwn — Ciz®|| +ep [l
i=1
From the condition (C1), (2.5) and (2.7), we get
nlgI;oHu”l —z,| =0. (2.10)

It is easy to prove
lim |lw, — 2,|| = 0. (2.11)
n—oo

By definition of the sequence {z,}, we obtain

[zn —Anll < lZns1 — zull + [|T0g1 — Anll

< Hanrl - .’L'n” + ||an'7f(xn) + ﬂann
+((1 —ep) — BuB — anA)A, — Ay ||

< lzngr — 2ol + anllvf(zn) — AAL] + ﬁn8”$n — Al +enllAnll.
Then
= Aall € e — @l + B () — A,
n n >~ 1_ﬁn3 n+1 n 1_5n3n7 n n
€
+—— A,
Y
Thanks to the conditions (C1) — (C2) and (2.5), we conclude that
nl;rrgo|\xn — A, =0. (2.12)
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Also
|wn — Anll < |lwn — 2n || + |20 — Asll,
hence
lim [lwn — Ayl =0. (2.13)
O

Theorem 2.2. Suppose all assumptions of Theorem 2.1 are holds. Then the
sequence {x,} is strongly convergent to a point T, where

ze ﬂle F(ST)(\GEP(F;,¥;) solves the variational inequality
(A=~ f)z, 7 —2) <0.
Equivalently, = Prr psryncepr,u) —A+7)(@).

.Proof. Obsewe that. P rismn GEP(F,v)) (I —.A +f) is a contraction of H
into itself. Since H is complete, there exists a unique element * € H such that

T=DPne psmynceprw)d —A+7)(@).

Next, we prove
limsup((A — 7f)2, 2 — A,) <0

n—oo

Let .% = Pnic=1 F(ST)nGEP(F“‘I’rL)xl’ Set

- 5 x) — Az
Ez{yeH:m—xnsmu—ﬂ+””“ﬂw)”MWG

It is clear, E is nonempty closed bounded convex subset of C' and S(E) C E,
T(E) C E. Without loss of generality, we may assume S and T' are mappings
of E into itself. Since {A,} C E is bounded, there is a subsequence {A,,} of
{A} such that

limsup{(A —vf)z,z — A,) = _li}m (A=~fz, 2 — Ap). (2.14)

n—o00 oo

As {An; } is also bounded, there exists a subsequence {An; } of {A,;} such that
Ay, — & Without loss of generality, let A,,; — §. Now, we prove the following
items:
(i): E€ F(ST)=F(T)NF(9S).
Assume ¢ ¢ F(ST). By Lemma 1.4 and Opial’s condition,

liminf|A,, — & < liminf|A,, - ST(S)]
j—oo Jj—o0

< liminf([An, = ST(An,)[| + [ST(An,) = ST(E)])
j—o00

< liminf||A,; —£J.

j—o00

That is a contradiction. Hence £ = F(ST)E.

(ii): By the same argument as in the proof of [7, Theorem 3.2], we conclude
. k

that £ € GEP(F;,¥;), for all i = 1,2,...,k. Then £ € (;_, GEP(F;,¥;).

Now, in view of (2.14), we see
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limsup((A —vf)Z, T — An) = (A —~vf)Z,Z2 — &) <0,

n
Finally, we show that {x,} is strongly convergent to Z. As a matter of fact,

IN

IN

IN

IN

Tn1 — Z|* = llanvf (@) + Ba By + (1 = en)] = BB — an AN, — 2
o (vf (2n) — AZ) + BnB(zn — Z)

+((1 = en)I = BuB — an A) (A, — Z) — £, %>

o (vf (2n) — AZ) + BnB(zn — Z)

+((1 —en)] — BB — ay A) (A, — T) + 5,7

o (vf (2n) — AZ) + BnB(zn — Z)

+((1 = en)] — BB — a, A) (A, — 7)||?

+2enllom (vf(zn) — AZ) + BnB(zn — T)

(1 = en)] = BuB — ay A) (N, — 2)|[||Z]| + 7 1212

182B(@n = ) + (1 = en)] = BB — anA) (A, — 2)|?

+20, (1 —ex)I — BB — an A)(Ap — Z),vf(zn) — AT)
+2enllom (vf (2n) — AZ) + BnB(zn — T)

+((1 —en)] = BB — an A) (A — 2)|l[|Z]|

+en |22 + ol v f (2n) — AZ|* + 200 80 (B(xn — T),7f (25) — AZ)
Bl Blll|lzn = Z[| + [[(1 = en)] — BnB — an Alll|An — 7))

F2any(An = 7, f(@n) — f(2)) + 2en||an(vf(zn) — AZ) + BpB(2n — T)
H(1 = en)] = BuB — ay A) (N = D)l Z]| + 7 2] + o |7 f (20) — Az
20, B (B(xy, — &), vf(xn) — AZ) + 20, (A, — T, v f(z) — AZ)
=20, {(end 4+ BnB + an A) (A, — Z),vf(zn) — AT)

(BuBllzn = Zl| + (1 = BuB — an¥)|lzn — Z)? + 24072y — 22
+2e,||an(Vf(zn) — AZ) + B B(xy — T)

(1 —en)] = BuB — an A) (N — 2)|[||Z]| + 7 1212

+ap|lyf (@) — AZ|? + 200, 80 (B(xn — T),7f (2n) — AZT)

+2an (A, — Z,vf(x,) — AZ)

=20, {(end + BnB + anA) (A, — Z),vf(zn) — AT)

(1 =203 = an)l|lzn — 2|1> + ap 3?20 — 2| + 2en]lan(vf (zn) — AZ)
+BnB(xn — ) + (1 = ea)I = BB — an A)(A, — Z)|[[|Z] + <5122
+ap |7 f(xn) = AZ|? + 2008, (B(wn — T),vf(2,) — AZ)

+2a, (A, — T, v f(2n) — AZ)

—2a,((end + BnB 4+ anA) (A — Z),vf(xn) — AZ)

(1 =203 = Pan)l|lzn — 2] + andy,
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where
Cn = ('_Y - ’Yp)am
O = an¥llzn — 2| + 2llan (v f(zn) — AZ)

+BnB(xn — ) + (1 = €n)] = BpB — an A) (A — Z)|[|Z] + &1 Z]?
Fan||vf(xn) = AZ|? + 28, (B(zn — 7),7f(2,) — AZ)
+2a, (A, — T, vf(z,) — AZ)

=20, {(end + BnB + an A) (A, — T),vf(zn) — AZ).

From conditions (C1) — (C2) and (C5) and Lemma 1.3, we obtain the sequence
{z,} strongly convergence to Z. a

Using Theorems 2.1 and 2.2, we obtain the following corollaries.

Corollary 2.3. [5, Theorem 3.1] Let C be a nonempty closed convex subset
of H. Suppose S and T are nonexpansive mappings of C into itself, such that
F(ST)=F(TS)=F(S)NF(T)#0. Let f be a contraction mapping from C
to C and {x,} be a sequence generated by vo = x € C' and

Tn+1 - Oénf(wn) + ﬂn
— — i—J j—1
+(1 - ay 6n)(n+1 Y ;;} ) S I v (STY'TI ),

for all n € N |J{0}, where {an}, {Bn} C [0,1] satisfy

oo
lim o, = 0, E Q, = 00.
n—oo

n=0

If 0 < hmmfﬂn < hmsupﬁn < 1, then {z,} converges strongly to z €

F(S )ﬂF( ), where z = PF(S N f(2) is the unique solution of the vari-
ational inequality

(I = f)z,z—x) >0,Yz € P(S)[ | F(T)

Proof. Setting F; =¥, =0,Vie {1,2,....k},A=B=I1,v=7=1,
en =0, and w, = x,, #(t) = (1 — p)t in Theorems 2.1 and 2.2. Thus the proof
is straightforward. O

Corollary 2.4. [5, Corollary 3.4] Let C' be a nonempty closed convex subset
of H. Suppose S and T are averaged mappings of C into itself, such that
F(SYNF(T) #0. Let f be a contraction mapping from C to C and {z,} be a
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sequence generated by ro = x € C' and

Tn41 - anf(xn) + /Bn
_ _ i—J j—1
+(1—ap 5n)(n+1 Y ;;@ Y SN (ST T,

for all n € N {0}, where {an,}, {Bn} C [0,1] satisfy

o0
lim o, =0, lim 3, =0, g Qy, = 00.
n—oo n—oo 0

n—

If0 < hmlnfﬂn < limsupf, < 1, then {x,} is strongly convergent to z €

n— oo

F(S )ﬂF( ), where z = Pp(syn rer)f(2) is the unique solution of the varia-
tional inequality

(I = f)z,z2—x)>0,Yz € F(S)[ | F(T)

Proof. Set S and T averaged mappings of C into itself, F; = ¥; = 0, for all
i€{1,2,...,k}, A=B=I,v=5=1,¢, =0 and w,, = 2, 0(t) = (1 — p)t
in Theorems 2.1 and 2.2. Thus the proof is straightforward. (I

Corollary 2.5. [8, Theorem 1] Let C be a nonempty closed convex subset
of H. Suppose S and T are nonexpansive mappings of C into itself, such
that ST = TS and F(S)F(T) # 0. Let {x,} be a sequence generated by
ro=x € C and

n n—i

Tn+41 :an$+(1_an)—ZZSlT]$n
(n+1)(n+2) — =

for alln € N, where {a,,} C [0,1] satisfy

nl;rréoan—ﬂ Zan—oo
n=0
Then {xy,} is strongly convergent to z € F(S)(F(T'), where Pp(syr(r) 15 @
metric projection of H onto F(S) N F(T).

Proof. Setting ST =TS, F; =¥, =0, forallie {1,2,...,k},A=B=1,v=
=1, fly) ==x,forally € C, e, =B, =0 and w,, = z,,,d(t) = (1 — p)t in
Theorems 2.1 and 2.2. Thus the proof is straightforward. O

Corollary 2.6. [10, Theorem 4] Let H be a Hilbert space and C a nonempty
closed convex subset of H. Suppose S and T are averaged mappings of C' into
itself such that F(S)( F(T) is nonempty. Suppose that {a,} satisfies

lim a,, =0, Zan—oo

n—o00
n=0
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For an arbitrary x € C, the sequence {x,} generated by

To =,
Tny1 = an® + (1 — an)m Dm0 2o ((STY SV (ST)' T~ ).

is strongly convergent to a common fized point Px of S and T, where P is the
metric projection of H onto F\(S)( F(T).

Proof. Setting S and T be averaged mappings of C' into itself and F; = ¥; = 0,
forallt € {1,2,...,k},A=B=I,v=7=1, fly) =x,VyeC,e, =5, =0
and wy, = x,,d(t) = (1 — p)t in Theorems 2.1 and 2.2. Thus the proof is
straightforward. O
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