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Abstract. In this paper we investigate the stability of one-sided pertur-

bation to g-frame expansions. We show that if Λ is a g-frame of a Hilbert

space H, Λa

i
= Λi + Θi where Θi ∈ L(H,Hi), and f̃ =

∑
i∈J

Λ⋆

i
Λ̃a

i
f ,

f̂ =
∑

i∈J
(Λa

i
)⋆Λ̃if , then ‖f̂ − f‖ ≤ α‖f‖ and ‖f − f̃‖ ≤ β‖f‖ for some

α and β.
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1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [6]. Their

work on frames was somewhat forgotten until 1986 when Daubechies, Gross-

mann and Meyer [5] brought it all back to life during their fundamental work

on wavelets. Frames have many nice properties which make them very useful

in many fields.Various generalizations of frames have been proposed; frame of

subspaces [4], subfusion frames [1], frame in a 2-inner product space [2] and so

on.
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Sun introduced g-frames in a complex Hilbert space and discussed their

properties (see [16]). Recently, g-frames in Hilbert spaces have been stud-

ied intensively, for more details see [8, 9, 10, 11] and the references therein.

G-frames in complex Hilbert spaces have some properties similar to those of

frames, but not all the properties are similar (see [15]). In this paper we give

some properties of g-frame and generalize some of the results from frame theory

to g-frame.

Throughout this paper, H is a separable Hilbert space and {Hi}i∈J is a

sequence of separable Hilbert spaces, where J is a subset of Z, L(H,Hi) is the

collection of all bounded linear operators from H to Hi.

A frame for a complex Hilbert space H is a family of vectors {fi}i∈J so that

there are two positive constants A and B satisfying

A‖f‖2 ≤
∑

i∈J

|〈f, fi〉|2 ≤ B‖f‖2, f ∈ H.

The constants A and B are called lower and upper frame bounds.

For each sequence {Hi}i∈J , we define the space
∑

i∈J

⊕Hi by

∑

i∈J

⊕
Hi = {{fi}i∈J : fi ∈ Hi, i ∈ J and

∑

i∈J

‖fi‖2 < ∞}.

With the inner product defined by

〈{fi}, {gi}〉 =
∑

i∈J

〈fi, gi〉,

it is clear that
∑

i∈J

⊕Hi is a Hilbert space.

A sequence Λ = {Λi ∈ L(H,Hi) : i ∈ J} is called a generalized frame, or

simply a g-frame, for H with respect to {Hi}i∈J if there exist two positive

constants AΛ and BΛ such that, for all f ∈ H,

AΛ‖f‖2 ≤
∑

i∈J

‖Λif‖2 ≤ BΛ‖f‖2.

The constants AΛ and BΛ are called the lower and upper g-frame bounds,

respectively. The sequence Λ̃ = {Λ̃i ∈ L(H,Hi) : i ∈ J} is called a dual

g-frame of Λ if it is g-frame and f = Σi∈JΛ
⋆
i Λ̃if for all f ∈ H.

Theorem 1.1. ([15]) Let Λ be a g-frame for H with respect to {Hi}i∈J . The

operator

S : H → H, Sf =
∑

i∈J Λ⋆
iΛif ,

is a positive invertible operator and every f ∈ H has an expansion

f =
∑

i∈J S−1Λ⋆
iΛif =

∑
i∈J Λ⋆

iΛiS
−1f .

In particular, {ΛiS
−1 ∈ L(H,Hi) : i ∈ J} is a g-frame for H with respect to

{Hi}i∈J and is called canonical dual g-frame of Λ. The operator S is called the

g-frame operator of Λ.
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Stability Of g-Frame Expansions 59

Definition 1.2. Let Λ be a g-frame for H. The synthesis operator for Λ is the

operator

TΛ :
∑

i∈J

⊕
Hi −→ H,

defined by TΛ({fi}i∈J ) =
∑

i∈J Λ⋆
i (fi).

Proposition 1.3. ([13]) Λ is a g-frame for H with upper bound BΛ if and only

if the synthesis operator is well defined from
∑

i∈J

⊕Hi onto H and bounded

with ‖TΛ‖ ≤
√
BΛ.

We say that the g-frame Λ is g-complete, if {f : Λif = 0, for all i ∈ J} = {0}
and g-orthonormal basis for H, if

〈Λ⋆
i gi,Λ

⋆
jgj〉 = δi,j〈gi, gj〉, i, j ∈ J, gi ∈ Hi, gj ∈ Hj ,

and ∑

i∈J

‖Λif‖2 = ‖f‖2.

We say that Λ is a g- Riesz basis for H, if it is g-complete and there exist

constants 0 < A ≤ B < ∞, such that for any finite subset I ⊆ J and gi ∈ Hi,

i ∈ I,

A
∑

i∈I

‖gi‖2 ≤ ‖
∑

i∈I

Λ⋆
i gi‖2 ≤ B

∑

i∈I

‖gi‖2.

Proposition 1.4. ([3]) Let F ∈ L(H) and G : H → H be linear. If there exist

two constants λ1, λ2 ∈ [0, 1) such that

‖Gh− Fh‖ ≤ λ1‖F (h)‖+ λ2‖G(h)‖, h ∈ H

then G ∈ L(H), is invertible and

1− λ2

1 + λ1

1

‖F‖‖h‖ ≤ ‖G−1h‖ ≤ 1 + λ2

1− λ1

‖F−1‖‖h‖, h ∈ H.

Proposition 1.5. ([14]) Let F : H → H be invertible on H. Suppose that

G : H → H is a bounded operator and ‖Gh−Fh‖ ≤ ν‖h‖, for all h ∈ H, where

ν ∈ [0, 1
‖F−1‖ ). Then

i) G is invertible on H and G−1 =
∑∞

k=0[F
−1(F −G)]kF−1;

ii) 1
1+ν‖F−1‖

1
‖F‖‖h‖ ≤ ‖G−1h‖ ≤ 1

1

‖F−1‖
−ν

‖h‖, for all h ∈ H.

Proof. (i) is proved in [7]. For (ii) observe that

‖Gh− Fh‖ ≤ ν‖F−1‖‖F (h)‖

and apply Proposition 1.4 with λ1 = ν‖F−1‖ < 1 and λ2 = 0. �
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2. Main Results

Theorem 2.1. Let Λ be a g-frame of H with an upper bound BΛ and D,B′ ≥ 0,

Λa
i = Λi +Θi where Θi ∈ L(H,Hi) satisfies

‖
∑

i∈J

Θ⋆
i gi‖ ≤ D‖

∑

i∈J

Λ⋆
i gi‖+

√
B′(

∑

i∈J

‖gi‖2)
1

2 ,

for every gi ∈ Hi, keeping Λa a g-frame. Assume further that Λ̃ is a dual g-

frame of Λ with an upper bound B
Λ̃
and that Λ̃a is a dual g-frame of Λa with an

upper bound B
Λ̃a . For given f ∈ H, if f̃ =

∑
i∈J Λ⋆

i Λ̃
a
i f , f̂ =

∑
i∈J(Λ

a
i )

⋆Λ̃if ,

fa =
∑

i∈J(Λ̃
a
i )

⋆Λif and f b =
∑

i∈J(Λ̃i)
⋆Λa

i f , then

‖f̂ − f‖ ≤ (D +
√

B′B
Λ̃
)‖f‖, ‖f − f̃‖ ≤ (D

√
B

Λ̃aBΛ +
√

B′B
Λ̃a)‖f‖,

‖f − fa‖ ≤ (D
√

B
Λ̃aBΛ +

√
B′B

Λ̃a)‖f‖, ‖f b − f‖ ≤ (D +
√
B′B

Λ̃
)‖f‖.

Proof. Since Λ̃ is a dual g-frame of Λ we have f =
∑

i∈J Λ⋆
i Λ̃if . Hence

f̂ − f =
∑

i∈J

Θ⋆
i Λ̃if,

thus

‖f̂ − f‖ = ‖
∑

i∈J

Θ⋆
i Λ̃if‖ ≤ D‖

∑

i∈J

Λ⋆
i Λ̃if‖+

√
B′(

∑

i∈J

‖Λ̃if‖2)
1

2

≤ D‖f‖+
√
B′B

Λ̃
‖f‖ = (D +

√
B′B

Λ̃
)‖f‖.

If f ∈ H, we have f =
∑

i∈J(Λ
a
i )

⋆Λ̃a
i f, and hence

f − f̃ =
∑

i∈J

(Λa
i )

⋆Λ̃a
i f −

∑

i∈J

Λ⋆
i Λ̃

a
i f

=
∑

i∈J

((Λa
i )

⋆ − Λ⋆
i )Λ̃

a
i f =

∑

i∈J

Θ⋆
i Λ̃

a
i f,
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Stability Of g-Frame Expansions 61

by Proposition 1.3 we know the synthesis operator TΛ for Λ is bounded by√
BΛ. Thus

‖f − f̃‖ = ‖
∑

i∈J

Θ⋆
i Λ̃

a
i f‖ ≤ D‖

∑

i∈J

Λ⋆
i Λ̃

a
i f‖+

√
B′(

∑

i∈J

‖Λ̃a
i f‖2)

1

2

≤ D‖TΛ{Λ̃a
i f}i∈J‖+

√
B′(

∑

i∈J

‖Λ̃a
i f‖2)

1

2

≤ D‖TΛ‖‖{Λ̃a
i f}i∈J‖+

√
B′(

∑

i∈J

‖Λ̃a
i f‖2)

1

2

≤ D‖TΛ‖(
∑

i∈J

‖Λ̃a
i f‖2)

1

2 +
√
B′(

∑

i∈J

‖Λ̃a
i f‖2)

1

2

≤ D
√

B
Λ̃aBΛ‖f‖+

√
B′B

Λ̃a‖f‖

= (D
√

B
Λ̃aBΛ +

√
B′B

Λ̃a)‖f‖.

Now for f, g ∈ H we have

f − fa =
∑

i∈J

(Λ̃a
i )

⋆Λa
i f −

∑

i∈J

(Λ̃a
i )

⋆Λif

=
∑

i∈J

(Λ̃a
i )

⋆(Λa
i − Λi)f =

∑

i∈J

(Λ̃a
i )

⋆Θif,

and hence

〈f − fa, g〉 = 〈
∑

i∈J

(Λ̃a
i )

⋆Θif, g〉 =
∑

i∈J

〈Θif, Λ̃
a
i g〉

=
∑

i∈J

〈f,Θ⋆
i Λ̃

a
i g〉 = 〈f,

∑

i∈J

Θ⋆
i Λ̃

a
i g〉

= 〈f, g − g̃〉.

Thus, for g = f − fa we have

‖f − fa‖2 = |〈f, f − fa − (f̃ − fa)〉|
≤ ‖f‖‖f − fa − (f̃ − fa)‖

≤ ‖f‖(D
√

B
Λ̃aBΛ +

√
B′B

Λ̃a)‖f − fa‖.

Hence

‖f − fa‖ ≤ (D
√

B
Λ̃aBΛ +

√
B′B

Λ̃a)‖f‖.

With similar calculations as above we have

f b − f =
∑

i∈J

Λ̃⋆
iΘif and 〈f b − f, g〉 = 〈f, ĝ − g〉.
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Thus, for g = f b − f we have

‖f b − f‖2 = |〈f, f̂ b − f − f b − f)〉|
≤ ‖f‖‖(f̂ b − f)− f b − f‖

≤ ‖f‖(D +
√

B′B
Λ̃a)‖f b − f‖.

�

Lemma 2.2. Let Λ be a g-frame of H, and let Λa
i = Λi + Θi where Θi ∈

L(H,Hi) is a g-Riesz basis with an upper bound B′ keeping Λa a g-frame.

Assume further that Λ̃ is a dual g-frame of Λ with an upper bound B
Λ̃
and that

Λ̃a is a dual g-frame of Λa with an upper bound B
Λ̃a . If f̃ , f̂ , fa and f b are

as in Theorem 2.1, then

‖f − f̃‖ ≤
√

B
Λ̃aB′‖f‖, ‖f̂ − f‖ ≤

√
B

Λ̃
B′‖f‖

and

‖f − fa‖ ≤
√
B

Λ̃aB′‖f‖, ‖f b − f‖ ≤
√

B
Λ̃
B′‖f‖.

Proof. Since Θi ∈ L(H,Hi) is a g-Riesz basis with upper bound B′, the results

follow from Theorem 2.1 with D = 0. �

By the above results and this fact that every g-orthonormal basis for H is a

g-Riesz basis for H with bounds 1 (see [13]), it is easy to show that

‖f − f̃‖ ≤
√
B

Λ̃a‖f‖ and ‖f̂ − f‖ ≤
√

B
Λ̃
‖f‖,

‖f − fa‖ ≤
√

B
Λ̃a‖f‖ and ‖f b − f‖ ≤

√
B

Λ̃
‖f‖.

Proposition 2.3. Let Λ be a g-frame of H, with lower frame bound A and let

Λa
i = Λi + Θi where Θi ∈ L(H,Hi), ‖Θi‖ < δi and 0 < (

∑
i∈J δ2i )

1

2 ≤ δ with√
A > δ. Then Λa is a g-frame. Assume further that Λ̃ is a dual g-frame of Λ

with upper bound B
Λ̃
and Λ̃a is a dual g-frame of Λa with upper bound B

Λ̃a . If

f̃ , f̂ , fa and f b are as in Theorem 2.1, then

‖f − f̃‖ ≤ δ
√
B

Λ̃a‖f‖ and ‖f − f̂‖ ≤ δ
√
B

Λ̃
‖f‖

‖f − fa‖ ≤ δ
√
B

Λ̃a‖f‖ and ‖f − f b‖ ≤ δ
√
B

Λ̃
‖f‖.

Proof. Since

∑

i∈J

‖(Λa
i − Λi)f‖2 =

∑

i∈J

‖Θif‖2 ≤
∑

δ2i ‖f‖2 ≤ δ2‖f‖2,
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and
√
A > δ > 0, by Theorem 3.1 of [16], Λa is a g-frame. If gi ∈ Hi, then

‖
∑

i∈J

Θ⋆
i gi‖ ≤

∑

i∈J

‖Θ⋆
i ‖‖gi‖

≤ (
∑

i∈J

δ2i )
1

2 (
∑

i∈J

‖gi‖2)
1

2 ≤ δ(
∑

i∈J

‖gi‖2)
1

2 .

The proof is complete by using Theorem 2.1. �

In [12], the authors investigated the stability of perturbation to frame ex-

pansions. We give similar results for the case of g-frame.

Theorem 2.4. Let Λ be a g-frame of H, and let Λa
i = Λi + Θi where Θi ∈

L(H,Hi) and ‖Θi‖ < δ and δ > 0 is fixed so that Λa remains a g-frame.

Assume further that Λ̃ is a dual g-frame of Λ with an upper bound B
Λ̃

and

that Λ̃a is a dual g-frame of Λa with upper bound B
Λ̃a . Let Θ be such that

〈Θ⋆
i gi,Θ

⋆
jgj〉 = 0 for gi ∈ Hi, gj ∈ Hj, and |i − j| > K with some positive

K ≥ 1. For given f ∈ H, we have

‖f − f̃‖ ≤ δ(2K + 1)
1

2

√
B

Λ̃a‖f‖

and

‖f − f̂‖ ≤ δ(2K + 1)
1

2

√
B

Λ̃
‖f‖.

Proof. If f ∈ H, we have f =
∑

i∈J(Λ
a
i )

⋆Λ̃a
i f, and so f − f̃ =

∑
i∈J Θ⋆

i Λ̃
a
i f.

Since Θ = {Θi ∈ L(H,Hi) : i ∈ J} is such that 〈Θ⋆
i gi,Θ

⋆
jgj〉 = 0 for gi ∈ Hi,

gj ∈ Hj , |i− j| > K, given i ∈ J we have

|
∑

j∈J

〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉| = |

∑

|i−j|≤K

〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉|

≤
∑

|i−j|≤K

|〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉|

≤
∑

|i−j|≤K

‖Θ⋆
i Λ̃

a
i f‖‖Θ⋆

j Λ̃
a
j f‖

≤
∑

|i−j|≤K

‖Θ⋆
i Λ̃

a
i f‖

2

2

+
∑

|i−j|≤K

‖Θ⋆
j Λ̃

a
j f‖

2

2

≤
∑

|i−j|≤K

‖Θ⋆
i ‖2‖Λ̃a

i f‖
2

2

+
∑

|i−j|≤K

‖Θ⋆
j‖2‖Λ̃a

j f‖
2

2

≤ δ2

2

∑

|i−j|≤K

‖Λ̃a
i f‖2 +

δ2

2

∑

|i−j|≤K

‖Λ̃a
j f‖2

≤ δ2

2
(2K + 1)‖Λ̃a

i f‖2 +
δ2

2

∑

|i−j|≤K

‖Λ̃a
j f‖2.
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Thus

‖f − f̃‖2 ≤ δ2(2K + 1)
∑

i∈J

‖Λ̃a
i f‖2 ≤ δ2(2K + 1)B

Λ̃a‖f‖2,

and hence

‖f − f̃‖ ≤ δ(2K + 1)
1

2

√
B

Λ̃a‖f‖.

If f ∈ H, then we have f =
∑

i∈J Λ⋆
i Λ̃if, and so f̂ − f =

∑
i∈J Θ⋆

i Λ̃if. Thus

‖f̂ − f‖2 ≤ δ2(2K + 1)
∑

i∈J

‖Λ̃if‖2 ≤ δ2(2K + 1)B
Λ̃
‖f‖2,

and so

‖f̂ − f‖ ≤ δ(2K + 1)
1

2

√
B

Λ̃
‖f‖.

�

Theorem 2.5. Let Λ be a g-frame of H, and let Λa
i = Λi + Θi where Θi ∈

L(H,Hi) and ‖Θi‖ < δ and δ > 0 is fixed so that Λa remains a g-frame.

Assume further that Λ̃ is a dual g-frame of Λ with an upper bound B
Λ̃

and

that Λ̃a is a dual g-frame of Λa with upper bound B
Λ̃a . Let Θ be such that

|〈Θ⋆
i gi,Θ

⋆
jgj〉| = δ2

r|i−j| 〈gi, gj〉 for gi ∈ Hi, gj ∈ Hj, and some r > 1. Then

there exist finite constants C,C ′ > 0 such that

‖f − f̃‖ ≤ Cδ‖f‖ and ‖f − f̂‖ ≤ C ′δ‖f‖.

Proof. For fixed i ∈ J , we have

|
∑

j

〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉| ≤ (

∑

j=i

+
∑

j>i

+
∑

j<i

)|〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉|

= I(i) + II(i) + III(i).

Since I(i) = |〈Θ⋆
i Λ̃

a
i f,Θ

⋆
i Λ̃

a
i f〉| = ‖Θ⋆

i Λ̃
a
i f‖2,

∑

i∈J

I(i) =
∑

i∈J

‖Θ⋆
i Λ̃

a
i f‖2 ≤ δ2B

Λ̃a‖f‖2.

Also, since II(i) =
∑

j>i |〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉| ≤

∑
j>i

δ2

rj−i |〈Λ̃a
i f, Λ̃

a
j f〉|, it follows

that

∑

i∈J

II(i) ≤
∑

i

∑

j>i

δ2

rj−i
|〈Λ̃a

i f, Λ̃
a
j f〉| ≤

∑

i

∑

j>i

δ2

rj−i
‖Λ̃a

i f‖‖Λ̃a
j f‖

≤
∑

i

∑

j>i

δ2

2rj−i
(‖Λ̃a

i f‖2 + ‖Λ̃a
j f‖2) =

δ2

2
(R+ S),

with

R =
∑

i

∑

j>i

1

rj−i
‖Λ̃a

i f‖2 ≤ 1

r − 1

∑

i

‖Λ̃a
i f‖2 ≤ B

Λ̃a

r − 1
‖f‖2
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and

S =
∑

i

∑

j>i

1

rj−i
‖Λ̃a

j f‖2 =
∑

j

∑

i<j

1

rj−i
‖Λ̃a

j f‖2 ≤ B
Λ̃a

r − 1
‖f‖2.

Therefore ∑

i∈J

II(i) ≤ δ2

2
(R+ S) ≤ B

Λ̃aδ
2

r − 1
‖f‖2.

For the last term, similarly we have

∑

i∈J

III(i) ≤ B
Λ̃aδ

2

r − 1
‖f‖2.

Hence

‖f − f̃‖2 =
∑

i

∑

j

〈Θ⋆
i Λ̃

a
i f,Θ

⋆
j Λ̃

a
j f〉 ≤ (B

Λ̃aδ
2 +

B
Λ̃aδ

2

r − 1
+

B
Λ̃aδ

2

r − 1
)‖f‖2

= B
Λ̃aδ

2 r + 1

r − 1
‖f‖2,

and so

‖f − f̃‖ ≤
√
B

Λ̃a

√
r + 1

r − 1
δ‖f‖ or ‖f − f̃‖ ≤ Cδ‖f‖.

Similarly we have ‖f − f̂‖ ≤ C ′δ‖f‖ where C ′ =
√

B
Λ̃

√
r+1
r−1

. �

Theorem 2.6. Let Λ be a g-frame of H, and let Λa
i = Λi + Θi where Θi ∈

L(H,Hi) and ‖Θi‖ < δ and δ > 0 is fixed so that Λa remains a g-frame. As-

sume further that Λ̃a is a dual g-frame of Λa. Let Θ be such that |〈Θ⋆
i gi,Θ

⋆
jgj〉| =

δ2

r|i−j| 〈gi, gj〉 for gi ∈ Hi, gj ∈ Hj, and some r > 1, or 〈Θ⋆
i gi,Θ

⋆
jgj〉 = 0 for

|i−j| > K with some positive K ≥ 1. Then there exist finite constants C,C ′ > 0

such that

‖f − fa‖ ≤ Cδ‖f‖ and ‖f − f b‖ ≤ C ′δ‖f‖.

Proof. By Theorems 2.4, 2.5, there exists C > 0 such that

‖g − g̃‖ ≤ Cδ‖g‖ ∀g ∈ H.

Now, for f, g ∈ H we have

〈f − fa, g〉 = 〈f, g − g̃〉.
Thus, for g = f − fa we have

‖f − fa‖2 ≤ ‖f‖Cδ‖f − fa‖,
and so

‖f − fa‖ ≤ Cδ‖f‖.

Again, by Theorems 2.4, 2.5 there exists C ′ > 0 such that ‖ĝ−g‖ ≤ C ′δ‖g‖, for all g ∈
H. Now, imitating the first part of the proof, we deduce that ‖f b−f‖ ≤ C ′δ‖f‖.
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By the above Theorems and Proposition we conclude

‖f̂ − f‖ ≤ C‖f‖, ‖f − f̃‖ ≤ C ′‖f‖,

‖f − fa‖ ≤ D‖f‖, ‖f b − f‖ ≤ D′‖f‖,

for some C, C ′, D, D′. By Proposition 1.5, if C < 1 then the operator R :

H → H defined by R(f) =
∑

i∈J Λ⋆
i Λ̃

a
i f is a bounded invertible operators,

f =
∑

i∈J

Λ⋆
i Λ̃

a
iR

−1f,

1

1 + C
‖f‖ ≤ ‖R−1f‖ ≤ 1

1− C
‖f‖,

and if C ′ < 1 the operator G : H → H defined by G(f) =
∑

i∈J(Λ
a
i )

⋆Λ̃if is a

bounded invertible operator,

f =
∑

i∈J

(Λa
i )

⋆Λ̃iG
−1f

and
1

1 + C ′
‖f‖ ≤ ‖G−1f‖ ≤ 1

1− C ′
‖f‖,

and if D < 1 the operator K : H → H defined by Kf =
∑

i∈J(Λ̃
a
i )

⋆Λif is a

bounded invertible operator,

f =
∑

i∈J

(Λ̃a
i )

⋆ΛiK
−1f

and
1

1 +D
‖f‖ ≤ ‖K−1f‖ ≤ 1

1−D
‖f‖,

and if D′ < 1 the operator L : H → H defined by Lf =
∑

i∈J(Λ̃i)
⋆Λa

i f is a

bounded invertible operator,

f =
∑

i∈J

(Λ̃i)
⋆Λa

iL
−1f

and
1

1 +D′
‖f‖ ≤ ‖K−1f‖ ≤ 1

1−D′
‖f‖.

�
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