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Abstract. In this work, we give a product Nyström method for solving a

Fredholm functional integral equation (FIE) of the second kind. With this

method solving FIE reduce to solving an algebraic system of equations.

Then we use some theorems to prove the existence and uniqueness of the

system. Finally we investigate the convergence of the method.
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1. Introduction

Functional integral equations have a significant role in important branches

of linear and nonlinear functional analysis and their applications. Equations

of such a type are often arise in physics, mechanics, control theory, economics

and engineering, for instance [16]-[22]. Functional integral equations have been

studied widly in several papers and monographs [23]-[28].
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Consider the following Fredholm functional integral equation of the second

kind

y(x)− p(x)y(h(x))− λ

∫ b

a

k(x, t)y(t)dt = g(x), a ≤ x ≤ b, (1.1)

where p(x), h(x), g(x) and k(x, t) are known functions and λ is known parame-

ter and y(x) is the unknown function to be determined. Here, we suppose that

the kernel k(x, t) is discontinuous at finite points and the unknown function

y(x) is continuous. Usually we can write the discontinuous kernel k(x, t) as

k(x, t) = p(x, t)k̄(x, t), where p(x, t) and k̄(x, t) are ill-posed and well-posed

functions with respect to their arguments, respectively. In the sequel, we sup-

pose that we have such representation.

2. The Method

We divide the interval [a, b] into N subinterval such that

h =
b− a

N
, xi = ti = a+ ih, i = 0, 1, . . . , N,

and N is multiplication of integer s ≥ 1. The integral part of (1.1) can be write

as
∫ b

a

k(x, t)y(t)dt =

∫ b

a

p(x, t)k̄(x, t)y(t)dt

=

N−s
s
∑

j=0

∫ tsj+s

tsj

p(x, t)k̄(x, t)y(t)dt, (2.1)

where choosing s is depend upon the used integration method, e.g. s = 1 in

the Trapezoidal rule and s = 2 in the Simpson rule.

In the product Nyström method, the well-posed part of integration over

every subinterval

Ij = [tsj , tsj+s], j = 0, 1, . . . ,
N − s

s
,

approximated by using Lagrange polynomials of degree s which interpolates at

points

tsj , tsj+1, . . . , tsj+s.

If we use the notation LN,j for the Lagrange polynomial at the subinterval Ij ,

we have:

k̄(x, t)y(t)|Ij ≃ LN,j =

sj+s
∑

i=sj

li,j(t)k̄(x, ti)y(ti), j = 0, 1, . . . ,
N − s

s
, (2.2)

where li,j(t) denote the Lagrange polynomial of degree s at the interval Ij , and

is defined as

li,j(t) =

sj+s
∏

k=sj, k 6=i

t− tk

ti − tk
, i = sj, sj + 1, . . . , sj + s; j = 0, 1, . . . ,

N − s

s
,
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so, for every subinterval Ij ,

∫ tsj+s

tsj

k(x, t)y(t)dt ≃

∫ tsj+s

tsj

LN,jp(x, t)dt,

and the approximation error can be find by

e =
∣

∣

∣

∫ tsj+s

tsj

k(x, t)y(t)dt−

∫ tsj+s

tsj

LN,jp(x, t)dt
∣

∣

∣
.

By substituting the interpolation polynomial LN,j in the relation (2.1), the

approximate value of integral part of the equation (1.1) reduce to

∫ b

a

k(x, t)y(t)dt ≃

N−s
s
∑

j=0

∫ tsj+s

tsj

LN,jp(x, t)dt

=

N−s
s
∑

j=0

sj+s
∑

i=sj

(

k̄(x, ti)y(ti)

∫ tsj+s

tsj

li,j(t)p(x, t)dt

)

=

s
∑

i=0

(

k̄(x, ti)y(ti)

∫ ts

t0

li,0(t)p(x, t)dt

)

+

2s
∑

i=s

(

k̄(x, ti)y(ti)

∫ t2s

ts

li,1(t)p(x, t)dt

)

+ · · ·+

N
∑

i=N−s

(

k̄(x, ti)y(ti)

∫ tN

tN−s

li,N−s
s

(t)p(x, t)dt

)

,

thus, for i = sj (j = 1, . . . , N−s
s

), we have two integral and one for other i s.

After collecting we can rewrite the above integral as

∫ b

a

k(x, t)y(t)dt ≃

N
∑

i=0

wi(x)k̄(x, ti)y(ti), (2.3)
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where

w0(x) =

∫ ts

t0

s
∏

k=1

t− tk

t0 − tk
p(x, t)dt

wsj(x) =

∫ tsj

tsj−s

sj−1
∏

k=sj−s

t− tk

tsj − tk
p(x, t)dt+

∫ tsj+s

tsj

sj+s
∏

k=sj+1

t− tk

tsj − tk
p(x, t)dt,

for j = 1, 2, . . . ,
N − s

s

wsj+m(x) =

∫ tsj+s

tsj

sj+s
∏

k=sj, k 6=sj+m

t− tk

tsj+m − tk
p(x, t)dt,

for j = 1, 2, . . . ,
N − s

s
, m = 1, 2, . . . , s− 1

wN (x) =

∫ tN

tN−s

N−1
∏

k=N−s

t− tk

tN − tk
p(x, t)dt. (2.4)

Now, we approximate y(h(x)) as

y(h(x)) ≃

N
∑

i=0

li,N (h(x))y(xi),

where li,N (h(x)) is defined as the following

li,N (h(x)) =
N
∏

k=0, k 6=i

h(x)− xk

xi − xk

.

Substituting these relations in (1.1), we have an approximate to the integral

equation (1.1) as the following

yN (x)−p(x)

N
∑

i=0

li,N (h(x))yN (xi)−λ

N
∑

i=0

wi(x)k̄(x, ti)yN (ti) = g(x), a ≤ x ≤ b,

(2.5)

where yN (x) shows the approximate solution from product Nyström method

for y(x). From xi = ti = a+ ih, (2.5) can be rewritten as the following

yN (x)−
N
∑

i=0

{

p(x)li,N (h(x))+λwi(x)k̄(x, ti)
}

yN (ti) = g(x), a ≤ x ≤ b. (2.6)

Theorem 2.1. For x = xj = tj , j = 0, 1, . . . , N , solving (2.6) is equal to

solving the following system of linear algebraic equation

yN (tj)−

N
∑

i=0

{

p(tj)li,N (h(tj)) + λwij k̄(tj , ti)
}

yN (ti) = g(tj), j = 1, 2, . . . , N,

(2.7)

where wij = wi(tj), and the vector YN = [yN (t0), . . . , yN (tN )]T is unknown.
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Proof. See [2]. �

The unknown function YN (x) can be calculated from (2.6) by having ap-

proximate values of yN (ti) as following

yN (x) = g(x) +

N
∑

i=0

{

p(x)li,N (h(x)) + λwi(x)k̄(x, ti)
}

yN (ti). (2.8)

The (2.8) is called Nyström interpolation formula.

In the next section we prove the existence and uniqueness of the system of

linear algebraic equations (2.7).

3. System of Linear Algebraic Equations

In this section we discuss the necessary conditions for existence and unique-

ness of the system of linear algebraic equations (2.7) in the Banach space L∞.

For easy discussing, consider the following functional integral equation of the

second kind

y(x)− p(x)y(h(x))− λ

∫ 1

−1

p(x, t)y(t)dt = g(x), −1 ≤ x ≤ 1, (3.1)

where g(x) is a known continuous function and p(x, t) is a weakly singular

kernel. By using the product Nyström method for equation (3.1) at nodes

{xj}
N

j=0, we have the following linear algebraic system

yN (tj) = g(tj) +

N
∑

i=0

{

p(tj)li,N (h(tj)) + wij

}

yN (ti), j = 0, 1, . . . , N.

Theorem 3.1. Suppose a function f(x) is interpolated on the interval [a, b] by

a polynomial pn(x) whose degree does not exceed n. Suppose further that f is

arbitrarily often differentiable on [a, b] and there exists M such that |f (i)(x)| ≤

M for i = 0, 1, 2, . . . and any x ∈ [a, b]. It can be shown without additional

hypotheses about the location of the support abscissas xi ∈ [a, b], that pn(x)

converges uniformly on [a, b] to f(x) as n → ∞.

Proof. See [8]. �

Theorem 3.2. Let {xi}
sj+s

i=sj , j = 0, 1, . . . , N−s
s

be the s + 1 support points of

Lagrange polynomial of degree s on subinterval [tsj , tsj+s]. Moreover suppose

that the weakly singular kernel p(x, t) satisfies the condition p(x, t) ∈ Lq for

q > 1 and let lN,j(f, t) denotes the interpolating Lagrange polynomial of degree

≤ s that interpolate function f at the nodes {xi}
sj+s

i=sj . Then, for every function

f ∈ C[−1, 1] which satisfies the hypothesis of theorem (3.1), we have

lim
N→∞

∥

∥

∥

∥

∫ 1

−1

p(x, t)f(t)dt−

∫ 1

−1

p(x, t)lN,j(f, t)dt

∥

∥

∥

∥

∞

= 0 (3.2)
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Proof.
∥

∥

∥

∥

∫ 1

−1

p(x, t)f(t)dt−

∫ 1

−1

p(x, t)lN,j(f, t)dt

∥

∥

∥

∥

∞

= sup
x

∣

∣

∣

∫ 1

−1

p(x, t)
(

f(t)− lN,j(f, t)
)

dt
∣

∣

∣

= sup
x

∣

∣

∣

N−s
s
∑

j=0

∫ tsj+s

tsj

p(x, t)
(

f(t)− lN,j(f, t)
)

dt
∣

∣

∣

≤ sup
x

N−s
s
∑

j=0

(

∫ tsj+s

tsj

|p(x, t)| · |f(t)− lN,j(f, t)|dt
)

.

Applying Hölder inequality for q, q′ > 1, ( 1
q
+ 1

q′
= 1), we have

sup
x

N−s
s
∑

j=0

(

∫ tsj+s

tsj

|p(x, t)| · |f(t)− lN,j(f, t)|dt
)

≤ sup
x

N−s
s
∑

j=0

‖p‖Lq
· ‖f − lN,j‖Lq′

.

Also from theorem 3.1 limN→∞ lN,j(f, t) = f(t). Thus ‖f − lN,j‖Lq′
→ 0 as

N → ∞. Also according to the assumption p ∈ Lq, we obtain that

lim
N→∞

sup
x

∣

∣

∣

∫ 1

−1

p(x, t)f(t)dt−

∫ 1

−1

p(x, t)lN,j(f, t)dt
∣

∣

∣
= 0,

and this complete the proof. �

For proving the existence and uniqueness of the solution of the linear al-

gebraic system (2.7), we use the Banach fixed point theorem. For providing

the conditions of the Banach fixed point theorem, we define the operator T̄ as

following

T̄ (yj)N = T (yj)N + gj ,

where, gj = g(tj), (yj)N = yN (tj),

T (yj)N =

N
∑

i=0

{

p(tj)li,N (h(tj)) + wij

}

(yi)N , j = 0, 1, . . . , N.

We will show that T̄ is a contraction in Banach space L∞. For this, we need

the following lemmas.

Lemma 3.3. For a given set of nodes {xi}
N

i=0 defined as in theorem 3.2, let

li,j(t) denotes the corresponding Lagrange polynomial on subinterval [tsj , tsj+s].

Then supN
∑N

j=0 |wij | exists for all functions p ∈ Lq, (q > 1) with ‖p‖Lq
=

{

∫ 1

−1
|p(x, t)|qdt

}
1
q

.
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Proof. Applying Hölder inequality for every p(x, t) ∈ Lq (q, q′ > 1, 1
q
+ 1

q′
= 1),

we have
∣

∣

∣

∣

∣

∫ tsj+s

tsj

p(x, t)li,j(t)dt

∣

∣

∣

∣

∣

≤

∫ tsj+s

tsj

|p(x, t)| · |li,j(t)|dt

≤ ‖p‖Lq
.‖li,j‖Lq′

.

Since p ∈ Lq and also for all j, li,j is a polynomial of degree s and hence belong

to Lq′ so

∃E1 > 0,

∣

∣

∣

∣

∣

∫ tsj+s

tsj

p(x, t)li,j(t)dt

∣

∣

∣

∣

∣

≤ E1,

so,

∃E2 > 0,

N−s
s
∑

j=0

∣

∣

∣

∫ tsj+s

tsj

p(x, t)li,j(t)|dt
∣

∣

∣
≤ E2.

Therefore from the relation (2.4), we get

∃E > 0,

N
∑

j=0

|wij | ≤ E.

Since this inequality satisfies for all N , thus supN
∑N

j=0 |wij | exists. �

Lemma 3.4. Assume that we have the same assumptions of the lemma 3.3,

and let the kernel p satisfies the conditions

{

p ∈ Lq, q > 1;

limxj→xk
‖p(xj , t)− p(xk, t)‖Lq

= 0, ∀xj , xk ∈ [−1, 1],
(3.3)

then

lim
xj→xk

sup
N

N
∑

i=0

|wi(xj)− wi(xk)| = 0. (3.4)

Proof. Suppose that xj , xk ∈ [−1, 1] are arbitrary points of partition points

set, then for all functions p(x, t) ∈ Lq we have

sup
N

N−s
s
∑

r=0

∣

∣

∣

∣

∫ tsr+s

tsr

li,r(t)
(

p(xj , t)− p(xk, t)
)

dt

∣

∣

∣

∣

≤ sup
N

N−s
s
∑

r=0

∫ tsr+s

tsr

|p(xj , t)− p(xk, t)|.|li,r(t)|dt.

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
6.

01
.0

04
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.ir

 o
n 

20
26

-0
2-

19
 ]

 

                             7 / 12

http://dx.doi.org/10.7508/ijmsi.2016.01.004
https://ijmsi.ir/article-1-462-en.html


42 N. Aghazadeh, S. Fathi

By using Hölder inequality for q, q′ > 1( 1
q
+ 1

q′
= 1), we get

sup
N

N−s
s
∑

r=0

∣

∣

∣

∣

∫ tsr+s

tsr

li,r(t)
(

p(xj , t)− p(xk, t)
)

dt

∣

∣

∣

∣

≤ sup
N

N−s
s
∑

r=0

{

∫ tsr+s

tsr

|p(xj , t)− p(xk, t)|
qdt
}

1
q

.‖li,r‖L′

q
.

Since li,r is a polynomial of degree s for every r, thus li,r ∈ Lq′ . Also we have

limxj→xk
‖p(xj , t)− p(xk, t)‖Lq

= 0. Therefore the relation (2.4) completes the

proof. �

Lemma 3.5. If supj |g(tj)|, supj |p(tj)| and supN
∑N

j=0 |wij | exist, then T̄ is

an operator from L∞ into itself.

Proof. Let U be the set of all functions yN = (yj)N in L∞ such that

∀yN , ‖yN‖L∞ = sup
j

|(yj)N | ≤ β,

where β is constant. We define operator norm in Banach space L∞ as

‖T̄ yN‖L∞ = sup
j

|T̄ (yj)N |. (3.5)

From the definition of the operator T̄ we have

|T̄ (yj)N | ≤ |pj |
N
∑

i=0

|li,N (hj)| sup
i

|(yi)N |+
N
∑

i=0

|wij | sup
i

|(yi)N |+ sup
j

|gj |,

from the lemma assumptions

∃H1, sup
j

|gj | ≤ H1,

∃H2, sup
j

|pj | ≤ H2,

and

∃E1, sup
N

N
∑

i=0

|wij | ≤ E1.

Since li,N is a polynomial of degree N for every i, thus

∃E2; sup
j

N
∑

i=0

|li,N (hj)| ≤ E2.

So

sup
j

|T̄ (yj)N | ≤ H2E2‖(yj)N‖L∞ + E1‖(yj)N‖L∞ +H1.

Since this inequality satisfies for all j, therefore

‖T̄ (yj)N‖L∞ ≤ σ1‖(yj)N‖L∞ +H1,
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where σ1 = H2E2 + E1. So T̄ yN ∈ L∞ i.e. ‖T̄ yN‖L∞ ≤ β. Also ‖T̄ yN‖L∞ ≤

σ1β +H1. By comparing two last relations we have:

σ1β +H1 ≤ β ⇒ (H2E2 + E1)β +H1 ≤ β ⇒
H1

β
≤ 1−H2E2 − E1.

Since H1 > 0 and β > 0 thus H2E2 + E1 < 1, that is σ1 < 1. Furthermore

the operator T is bounded because |TyN |L∞ ≤ σ1‖yN‖L∞ . Therefore from

definition of T̄ we conclude that T̄ is a bounded operator. �

Lemma 3.6. With the conditions of lemma 3.5, T̄ is a contraction operator

in Banach space L∞.

Proof. According to the definition of operator T̄ , for functions yN = (yj)N and

zN = (zj)N from L∞ we have:

|T̄ (yj)N − T̄ (zj)N | ≤

N
∑

i=0

|pj ||li,N (hj)|+ |wij | sup
j

|(yj)N − (zj)N |.

By using the conditions of lemma 3.5, we get

|T̄ (yj)N − T̄ (zj)N | ≤
(

H2E2 + E1

)

‖(yj)N − (zj)N‖L∞ .

This inequality satisfies for all j, so

‖T̄ yN − T̄ zN‖L∞ ≤ σ1‖yN − zN‖L∞ .

Consequently under the condition of σ1 < 1, T̄ is a contraction operator in

Banach space L∞. �

Theorem 3.7. With the assumptions of lemma 3.5, the system of equations

(2.7) has a unique solution in Banach space L∞.

Proof. According to the Banach fixed point theorem, since T̄ is a contraction

operator, thus the system of equations (2.7) has a unique solution in L∞. �

4. Convergence of the Method

By applying the product Nyström method for solving the integral equation

(3.1), we obtain the approximate solution yN (x) as follows:

yN (x) = g(x) +

N
∑

i=0

{

p(x)li,N (h(x)) + wi(x)
}

yN (xi),

where wi(x) can be obtain from relation (2.4).

Definition 4.1. The product Nyström method is convergent of order r in

[−1, 1], if and only if for sufficiently large N , there is a constant c > 0 indepen-

dent from N such that

‖y(x)− yN (x)‖L∞ ≤ cN−r.
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Local approximate error obtains from

y(x)− yN (x) =

N
∑

i=0

[

wi(x) + p(x)li,N (h(x))
][

y(xi)− yN (xi)
]

+ eN (x).

So

(y − yN )−

N
∑

i=0

[

wi(x) + p(x)li,N (h(x))
][

y(xi)− yN (xi)
]

= eN (x). (4.1)

Now we define linear operator AN as

AN : C[−1, 1] → C[−1, 1]

ANf(x) =

N
∑

i=0

[

wi(x) + p(x)li,N (h(x))
]

f(xi), f ∈ C[−1, 1], x ∈ [−1, 1].

So we can rewrite the relation (4.1) as follow
(

I −AN

)

(

y(x)− yN (x)
)

= eN (x),

thus
(

y − yN (x)
)

=
(

I −AN

)−1

eN (x),

since this satisfies for every x, therefore

sup
x

∣

∣

∣

(

y − yN
)

(x)
∣

∣

∣
≤ sup

x

∣

∣

∣

(

I −AN

)−1
eN (x)

∣

∣

∣
,

so
∥

∥y − yN
∥

∥

∞
≤
∥

∥

∥

(

I −AN

)−1
∥

∥

∥

∞
.‖eN‖∞. (4.2)

Theorem 4.2. If we define integral operator A′ as follow

A′ : C[−1, 1] → C[−1, 1],

A′f(x) =

∫ 1

−1

p(x, t)f(t)dt, f ∈ C[−1, 1], x ∈ [−1, 1],

then the integral operator A′ with weakly singular kernel of p(x, t) is a compact

operator on C[−1, 1].

Proof. See [1]. �

Now we define operator A as follow

A : C[−1, 1] → C[−1, 1]

Af(x) =

∫ 1

−1

p(x, t)f(t)dt+
N
∑

i=0

p(x)li,N (h(x))f(xi),

Since operator A′ is compact, thus the operator A is compact too. Also ac-

cording to the definition of operators A and AN we have

‖A−AN‖∞ =

∥

∥

∥

∥

∫ 1

−1

p(x, t)f(t)dt−

∫ 1

−1

p(x, t)LN,j(f, t)dt

∥

∥

∥

∥

∞

, (4.3)
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where LN,j is the Lagrange interpolation polynomial of the continues function

f . Also from (4.2) the right hand side of relation (4.3) converges to zero, when

N → ∞. So limN→∞ ‖A−AN‖∞ = 0.

For studying behavior of ‖
(

I − AN

)−1
‖∞, we have the following theorem

from [7].

Theorem 4.3. Suppose that A : C[−1, 1] → C[−1, 1] is a linear, compact oper-

ator and AN is a sequence of linear, bounded operators such that limN→∞ ‖A−

AN‖∞ = 0, then the inverse operator
(

I −AN

)−1
: C[−1, 1] → C[−1, 1] exists

for all sufficiently large N, and there exist constant c > 0 independent of N

such that ‖
(

I −AN

)−1
‖∞ ≤ c.

From (4.2), limN→∞ eN = 0, so we have the following theorem for conver-

gence of product Nyström method:

Theorem 4.4. Under the conditions of theorem 4.3 the approximate solution

yN (x) from product Nyström method is uniformly convergent to exact solution

y(x).

Proof. The proof follows from (4.3) and theorem 4.3. �
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