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ABSTRACT. In this paper we characterize Bergman spaces with respect to
double integral of the functions |f(2) — f(w)|/|z—w], | f(2)— f(w)]/p(z, w)
and |f(z) — f(w)|/B(z,w), where p and S are the pseudo-hyperbolic and
hyperbolic metrics. We prove some necessary and sufficient conditions

that implies a function to be in Bergman spaces.
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1. INTRODUCTION

For z = (21, ,2zn) and w = (w1, -+ ,w,) in C", we define (z,w) = z1w7 +
-+ + z,Wy,, where Wy is the complex conjugate of wy. We also write |z| =
V(2. 2) = /]z1]2 + -+ + |[2a]2. Let B,, denotes the open unit ball of C", that

1S

B, ={z€C":|z] <1}.
For any a € B,, — {0}, we define

a— Pa(z) - SaQa(z)
1—{z,a)

val(z) = z € B,,
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where s, = /1 — |a|?, P, is the orthogonal projection from C™ onto the sub-
space [a] generated by a, and @, is the orthogonal projection from C™ onto
C™ — [a]. When a = 0, we define p,(2) = —z. These functions are called
involutions. (see [9] for more information about these functions)

The hyperbolic metric (Bergman metric) is defined by

Lt lp(w)]
1L—Jp.(w)]”
For any z € B,, and r > 0, we denote Bergman metric ball at z by D(z,r).
That is

1
ﬂ(27w)=§10g w € B,.

D(z,r) ={w e B, : B(z,w) < r}.
Also, pseudo-hyperbolic metric is defined by p(z,w) = |p.(w)|.
For a > —1 let
dve(2) = co(1 — |2]?)%dv(2)
where dv(z) is the Lebesgue volume measure on B,, and ¢, is a positive constant

with v4(B,) = 1. For 0 < p < oo and o > —1, the weighted Bergman space
AP counsists of all holomorphic functions in L?(B,,, dv, ), that is

AL = {f € H(Bn) : [|f1a,p :/ [f(2)[Pdva(z) < OO-}

Wulan and Zhu [8], characterized Bergman spaces with standard weights in
terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-
hyperbolic metrics. In [4] Li et al. proved that a holomorphic function f belongs
to the A2, p > n+ 1+ «, if and only if the function |f(z) — f(w)|/|1 — (z, w)]
is in L?(B,, x By, dvy x dv,), where y = (p+a—n—1)/2.
Also, it was shown in [5] that for the case 0 < p <n+ 1+ «, f € AP if and
only if the function |f(z) — f(w)|/|1 — (z,w)| is in LP(B,, X B,,dv, X dvy) if
and only if the function |f(z) — f(w)|/|z — w| is in LP(B,, X By, dvs X dvg,).
Our aim in this paper is to prove, for f € A2, p > n+ 1+ «, the function
|f(z) = f(w)]/|z —w]| is in LP(B,, X B,,,dv; X dv;), where t = (p+a—n—1)/2
and if p=n+1+ «, then |f(2) — f(w)|/|z — w| is in LP(B,, x B,,, dvy x dv,),
for any v > a. Our results are applicable for studying the action of symmetric
lifting operator on AP in all cases especially for the case p = o + 2.
Also we replace the Euclidean metric with pseudo-hyperbolic metric p and
Bergman metric 5.

2. PRELIMINARIES

Lemma 2.1. [9] There exists a positive constant C' such that

p C p
P < T / e v

for all f € HB,) and z € B,,.
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Lemma 2.2. [9] Suppose s > —1, t is real, and

1 — |w|?)?
1(2) :/B 1_(<Z’w|>|l+)1+s+t do(w), = €B,.

n

Then I(z) is bounded in B,, whenevert < 0, and I(z) is bounded by (1—|z|?)~*
whenever t > 0.

Theorem 2.3. [8] Suppose that p >0, a > —1 and f is analytic in B,,. Then
the following conditions are equivalent.

(1) feAs.

(2) There exists a continuous function g in LP (B, dv,) such that
£ (2) = f(w)] < p(z,w)(g(2) + g(w)), 2z,w € By

(3) There exists a continuous function g in LP (B, dv,) such that
£ (2) = f(w)| < B(z,w)(g(2) + g(w)), 2w € B,.

(4) There exists a continuous function g in LP(B,,, dvptqa) such that
1f(2) = f(w)] < |z —wl(g(2) + g(w)), zw € By.

Lemma 2.4. [4] Let r > 0. Then
1= [z ~ 1= |wf? ~ [1 = (2, w)]

for all z € B, and w € D(z,7). Furthermore, there exists a positive constant
C such that

G @) = f@Pdsw)

(1 _ ‘Z|2)n+1 D(z,r)

for all z € B, and f € H(B,,).

(1= 2PV ()P <

3. PSEUDO-HYPERBOLIC METRIC

Lemma 3.1. Suppose a > —1 and f € H(B,). Then there exists a positive
constant C' such that

_HO)P do(» @) = TP 3 v (w
L@ —ordne s [ [ EEIEE b ),

Proof. Let
[ @t
J(f)—/Bn/Bn LR v, (v (),

zZ,w)
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By making a change of variable, we have

|f(2) = flpz(w)[P (1 — |z>)ntite
J(f) =/Bn dva(2) /B p(z,gpzzow))P T = (2, w) 2 T7a) v, (w)

:/ dva(z)/ |f(Z) — f(@z(w)”p (1 — |Z‘ )n+ o d’Ua(UJ)
B, B,

|wlP 1= (zw)Plrtite)

p (1- |Z‘2)n+1+a
> [ aunte) [ 156 st U B vt

(1 _ ‘Z|2)n+1+o¢

2 [ ) [ 156 = AP e v

From the first part of Lemma 2.4, there exists a positive constant C’ such that

20 [ [ DL 4, )

n (Z,T')

Then Lemma 2.1 implies that there exists another positive constant C' such
that

EYe / 1F(2) — F(@=(2))P dvalz) = C / 0P dva(2).

The proof is complete. O

Lemma 3.2. Suppose o > —1 and f € AL. Then

M Vo (2)adVo (W 00
/]En An p(z,w)P dvg(2)dve (w) < oo,

Proof. Given f € AP, from Theorem 2.3, there exists a continuous function
g € L?(B,,, dv,) such that for all z,w € B,,,

£ (2) = f(w)| < p(z, w)(g(2) + g(w)).

There exists a positive constant C' such that

£ (z) = fw)[? < C(g(2)? + g(w)P).

p(z, w)P

/ / pz,fﬁf' Qv (2)dv ()
<C/ IXCE ] 0)?) dve(2)dva(w)
_20// 2)P dve(2)dvg (w) < oo.

We can combine these two lemmas and obtain the following theorem.

So,
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Theorem 3.3. Suppose that o > —1. Then f € AP if and only if

/ / z,zf ol dva(2)dva (w) < oo.

4. BERGMAN METRIC

Now, we replace metric p by Bergman metric (.

Lemma 4.1. Suppose that « > —1 and f € H(B,,). If

lf(z) = f(w)|P
/an /Ia%n - Bzwp dvg (2)dr(w) < o0,

then f € AP where
dv(w)
dr(w) = (1 — [w]2)r+?

is the Mobius invariant volume measure on B,,.

Proof. By Lemma 2.4, there exists a positive constant C' such that

— C Z) — ’ w 2(1’(} w
— C Z)— 1(11} w
<W +1 Jra/ () |f( ) f(’LU)‘ a( )

Since D(z,r) is open unit ball in metric 3, we have

1 PPV < — / o &) = 1@ 4 ).

(1 —[z[2)ntite B(z,w)p

A= 2PV ()P

After integrating

/(1f|z| VIV £(2)|Pdva (2 <crp/ /”) G = )l (w)yar(2)
<crp/ / fw)‘p v (w)dr(2).

Therefore (1 — |2]2)Vf(z) € AP. It follows from Theorem 2.16 of [9] that
feAr. O

E
—~ N
S
bS]

By the same reason as in Lemma 3.2, we can prove the following lemma.

Lemma 4.2. Suppose a« > —1 and f € H(B,,). If f € AP, then

// z,i o dva(2)dva (w) < oo.
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5. EUCLIDEAN METRIC

Theorem 5.1. Suppose o > =1, p=n+1+a«a and f € AL, then

- ISl
f)—/Bn/an_wV, v (2)dv (w) < oo,

Proof. Given f € AP, from Theorem 2.3, there exists a continuous function
g € L?(B,,, dv,) such that for all z,w € B,,,

for any v > a.

|2 = wl

7(2) = F@)| < plew)(9z) +9w)) < [

(9(2) + g(w)).

There exists a positive constant C' such that
dv (w)
I(f) <2C Pd —
W20 [ ey ante) [ 2L
dv (w)
=9 P q x .
[, 967 dnte) || e

Since v —y < 0, by Lemma 2.2, the last integral is bounded. Then there exists
another positive constant M such that

<M/ (2)Pdvy (2

Moy [ e s 0 (o) ()

n

< Mz—v g(2)Pdvg(2) < 0.
a JB,

O

Lemma 5.2. Suppose o > —1, f € H(B,,) and § and ~ are real parameters
such that

S+y=p+a—-—(n+1), -l1<y<p—(n+1).

If f € AP, then
|P
/ / \z — w|P ———————dvs(2)dvy(w) < oo.

Proof. By the proof of the previous lemma, there exists a positive constant C'

such that
d
1(f) <2C/ P dvs(z /B |1U<”Z(7“3>p

dv(w)
_20/ p d'U(S / |1 o <Z7,w>‘n+1+’y+(57a) .



http://dx.doi.org/10.7508/ijmsi.2016.01.003
https://ijmsi.ir/article-1-451-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.7508/ijmsi.2016.01.003 ]

Double Integral Characterization for Bergman Spaces 33

Since § — a > 0, by Lemma 2.2, there exists another positive constant M such
that

1(f) M/ 9z M/ 2P dva(z) <
1 — |Z|2)6 o ’115 Ua 0.

Corollary 5.3. Suppose that o > —1, p>n+1+4+a and f € AP, then

M Vi(2)ave(w 00
/IBn/]Bn |z — wlp dvy(z)dvg(w) < oo,

_ pra—=(nt1)
where t = —————.

If n =1, then we obtain the following corollary.

Corollary 5.4. Suppose that o > —1, p > a+ 2 and f € AP (D), then

//M dA;(2)d A, (w) < oo,
pJp |z—wP

The symmetric lifting operator L : H(D) — H(D x D) is defined by

L)y - £ = Fw)

z—w
The action of symmetric lifting operator on A2 (D) in the cases p > a + 2 and
p < a+2 was studied in [8]. In the case p = a+2, we have the following result.

where t = W.

Corollary 5.5. Suppose that a« > —1, p = a4+ 2. Then the symmetric lifting
operator maps AL(D) into AP(D?), for any v > a.

Proof. The result follows by letting n = 1 in Theorem 5.1. O

Ifa>—1,p>a+2and f € AP(D), then by Corollary 5.4, L(f) € A} (D?),
which means that the symmetric lifting operator maps f € AE (D) into A (D?),
for t = 2*9=2 This is the Theorem 4.4 in [8).
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