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Abstract. In this paper we characterize Bergman spaces with respect to

double integral of the functions |f(z)−f(w)|/|z−w|, |f(z)−f(w)|/ρ(z, w)

and |f(z)− f(w)|/β(z, w), where ρ and β are the pseudo-hyperbolic and

hyperbolic metrics. We prove some necessary and sufficient conditions

that implies a function to be in Bergman spaces.
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1. Introduction

For z = (z1, · · · , zn) and w = (w1, · · · , wn) in C
n, we define 〈z, w〉 = z1w1+

· · · + znwn, where wk is the complex conjugate of wk. We also write |z| =
√

〈z, z〉 =
√

|z1|2 + · · ·+ |zn|2. Let Bn denotes the open unit ball of Cn, that

is

Bn = {z ∈ C
n : |z| < 1}.

For any a ∈ Bn − {0}, we define

ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
z ∈ Bn,
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where sa =
√

1− |a|2, Pa is the orthogonal projection from C
n onto the sub-

space [a] generated by a, and Qa is the orthogonal projection from C
n onto

C
n − [a]. When a = 0, we define ϕa(z) = −z. These functions are called

involutions. (see [9] for more information about these functions)

The hyperbolic metric (Bergman metric) is defined by

β(z, w) =
1

2
log

1 + |ϕz(w)|

1− |ϕz(w)|
, z, w ∈ Bn.

For any z ∈ Bn and r > 0, we denote Bergman metric ball at z by D(z, r).

That is

D(z, r) = {w ∈ Bn : β(z, w) < r}.

Also, pseudo-hyperbolic metric is defined by ρ(z, w) = |ϕz(w)|.

For α > −1 let

dvα(z) = cα(1− |z|2)αdv(z)

where dv(z) is the Lebesgue volume measure on Bn and cα is a positive constant

with vα(Bn) = 1. For 0 < p < ∞ and α > −1, the weighted Bergman space

Ap
α consists of all holomorphic functions in Lp(Bn, dvα), that is

Ap
α =

{

f ∈ H(Bn) : ||f ||
p
α,p =

∫

Bn

|f(z)|pdvα(z) < ∞.

}

Wulan and Zhu [8], characterized Bergman spaces with standard weights in

terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-

hyperbolic metrics. In [4] Li et al. proved that a holomorphic function f belongs

to the Ap
α, p > n+ 1 + α, if and only if the function |f(z)− f(w)|/|1− 〈z, w〉|

is in Lp(Bn × Bn, dvγ × dvγ), where γ = (p+ α− n− 1)/2.

Also, it was shown in [5] that for the case 0 < p < n + 1 + α, f ∈ Ap
α if and

only if the function |f(z) − f(w)|/|1 − 〈z, w〉| is in Lp(Bn × Bn, dvα × dvα) if

and only if the function |f(z)− f(w)|/|z − w| is in Lp(Bn × Bn, dvα × dvα).

Our aim in this paper is to prove, for f ∈ Ap
α, p > n + 1 + α, the function

|f(z)− f(w)|/|z −w| is in Lp(Bn ×Bn, dvt × dvt), where t = (p+ α− n− 1)/2

and if p = n+ 1 + α, then |f(z)− f(w)|/|z − w| is in Lp(Bn × Bn, dvγ × dvγ),

for any γ > α. Our results are applicable for studying the action of symmetric

lifting operator on Ap
α in all cases especially for the case p = α+ 2.

Also we replace the Euclidean metric with pseudo-hyperbolic metric ρ and

Bergman metric β.

2. Preliminaries

Lemma 2.1. [9] There exists a positive constant C such that

|f(z)|p ≤
C

(1− |z|2)n+1+α

∫

D(z,r)

|f(w)|p dvα(w)

for all f ∈ H(Bn) and z ∈ Bn.
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Lemma 2.2. [9] Suppose s > −1, t is real, and

I(z) =

∫

Bn

(1− |w|2)s

|1− 〈z, w〉|n+1+s+t
dv(w), z ∈ Bn.

Then I(z) is bounded in Bn whenever t < 0, and I(z) is bounded by (1−|z|2)−t

whenever t > 0.

Theorem 2.3. [8] Suppose that p > 0, α > −1 and f is analytic in Bn. Then

the following conditions are equivalent.

(1) f ∈ Ap
α.

(2) There exists a continuous function g in Lp(Bn, dvα) such that

|f(z)− f(w)| ≤ ρ(z, w)(g(z) + g(w)), z, w ∈ Bn.

(3) There exists a continuous function g in Lp(Bn, dvα) such that

|f(z)− f(w)| ≤ β(z, w)(g(z) + g(w)), z, w ∈ Bn.

(4) There exists a continuous function g in Lp(Bn, dvp+α) such that

|f(z)− f(w)| ≤ |z − w|(g(z) + g(w)), z, w ∈ Bn.

Lemma 2.4. [4] Let r > 0. Then

1− |z|2 ∼ 1− |w|2 ∼ |1− 〈z, w〉|

for all z ∈ Bn and w ∈ D(z, r). Furthermore, there exists a positive constant

C such that

(1− |z|2)p|∇f(z)|p ≤
C

(1− |z|2)n+1

∫

D(z,r)

|f(w)− f(z)|pdv(w)

for all z ∈ Bn and f ∈ H(Bn).

3. Pseudo-Hyperbolic Metric

Lemma 3.1. Suppose α > −1 and f ∈ H(Bn). Then there exists a positive

constant C such that

∫

Bn

|f(z)− f(0)|p dvα(z) ≤ C

∫

Bn

∫

Bn

|f(z)− f(w)|p

ρ(z, w)p
dvα(z)dvα(w).

Proof. Let

J(f) =

∫

Bn

∫

Bn

|f(z)− f(w)|p

ρ(z, w)p
dvα(z)dvα(w).
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By making a change of variable, we have

J(f) =

∫

Bn

dvα(z)

∫

Bn

|f(z)− f(ϕz(w))|
p

ρ(z, ϕz(w))p
(1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α)
dvα(w)

=

∫

Bn

dvα(z)

∫

Bn

|f(z)− f(ϕz(w))|
p

|w|p
(1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α)
dvα(w)

≥

∫

Bn

dvα(z)

∫

Bn

|f(z)− f(ϕz(w))|
p (1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α)
dvα(w)

≥

∫

Bn

dvα(z)

∫

D(z,r)

|f(z)− f(ϕz(w))|
p (1− |z|2)n+1+α

|1− 〈z, w〉|2(n+1+α)
dvα(w).

From the first part of Lemma 2.4, there exists a positive constant C ′ such that

J(f) ≥ C ′

∫

Bn

dvα(z)

∫

D(z,r)

|f(z)− f(ϕz(w))|
p

(1− |z|2)n+1+α
dvα(w).

Then Lemma 2.1 implies that there exists another positive constant C such

that

J(f) ≥ C

∫

Bn

|f(z)− f(ϕz(z))|
p dvα(z) = C

∫

Bn

|f(z)− f(0)|p dvα(z).

The proof is complete. �

Lemma 3.2. Suppose α > −1 and f ∈ Ap
α. Then

∫

Bn

∫

Bn

|f(z)− f(w)|p

ρ(z, w)p
dvα(z)dvα(w) < ∞.

Proof. Given f ∈ Ap
α, from Theorem 2.3, there exists a continuous function

g ∈ Lp(Bn, dvα) such that for all z, w ∈ Bn,

|f(z)− f(w)| ≤ ρ(z, w)(g(z) + g(w)).

There exists a positive constant C such that

|f(z)− f(w)|p

ρ(z, w)p
≤ C(g(z)p + g(w)p).

So,
∫

Bn

∫

Bn

|f(w)− f(z)|p

ρ(z, w)p
dvα(z)dvα(w)

≤C

∫

Bn

∫

Bn

(g(z)p + g(w)p) dvα(z)dvα(w)

=2C

∫

Bn

∫

Bn

g(z)p dvα(z)dvα(w) < ∞.

�

We can combine these two lemmas and obtain the following theorem.
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Theorem 3.3. Suppose that α > −1. Then f ∈ Ap
α if and only if

∫

Bn

∫

Bn

|f(z)− f(w)|p

ρ(z, w)p
dvα(z)dvα(w) < ∞.

4. Bergman metric

Now, we replace metric ρ by Bergman metric β.

Lemma 4.1. Suppose that α > −1 and f ∈ H(Bn). If

∫

Bn

∫

Bn

|f(z)− f(w)|p

β(z, w)p
dvα(z)dτ(w) < ∞,

then f ∈ Ap
α, where

dτ(w) =
dv(w)

(1− |w|2)n+1

is the Mobius invariant volume measure on Bn.

Proof. By Lemma 2.4, there exists a positive constant C such that

(1− |z|2)p|∇f(z)|p ≤
C

(1− |z|2)n+1

∫

D(z,r)

|f(z)− f(w)|pdv(w)

≤
C

(1− |z|2)n+1+α

∫

D(z,r)

|f(z)− f(w)|pdvα(w).

Since D(z, r) is open unit ball in metric β, we have

(1− |z|2)p|∇f(z)|p ≤
Crp

(1− |z|2)n+1+α

∫

D(z,r)

|f(z)− f(w)|p

β(z, w)p
dvα(w).

After integrating

∫

Bn

(1− |z|2)p|∇f(z)|pdvα(z) ≤Crp
∫

Bn

∫

D(z,r)

|f(z)− f(w)|p

β(z, w)p
dvα(w)dτ(z)

≤Crp
∫

Bn

∫

Bn

|f(z)− f(w)|p

β(z, w)p
dvα(w)dτ(z).

Therefore (1 − |z|2)∇f(z) ∈ Ap
α. It follows from Theorem 2.16 of [9] that

f ∈ Ap
α. �

By the same reason as in Lemma 3.2, we can prove the following lemma.

Lemma 4.2. Suppose α > −1 and f ∈ H(Bn). If f ∈ Ap
α, then

∫

Bn

∫

Bn

|f(z)− f(w)|p

β(z, w)p
dvα(z)dvα(w) < ∞.
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5. Euclidean metric

Theorem 5.1. Suppose α > −1, p = n+ 1 + α and f ∈ Ap
α, then

I(f) =

∫

Bn

∫

Bn

|f(z)− f(w)|p

|z − w|p
dvγ(z)dvγ(w) < ∞,

for any γ > α.

Proof. Given f ∈ Ap
α, from Theorem 2.3, there exists a continuous function

g ∈ Lp(Bn, dvα) such that for all z, w ∈ Bn,

|f(z)− f(w)| ≤ ρ(z, w)(g(z) + g(w)) ≤
|z − w|

|1− 〈z, w〉|
(g(z) + g(w)).

There exists a positive constant C such that

I(f) ≤2C

∫

Bn

g(z)p dvγ(z)

∫

Bn

dvγ(w)

|1− 〈z, w〉|p

=2C

∫

Bn

g(z)p dvγ(z)

∫

Bn

dvγ(w)

|1− 〈z, w〉|n+1+α
.

Since α−γ < 0, by Lemma 2.2, the last integral is bounded. Then there exists

another positive constant M such that

I(f) ≤M

∫

Bn

g(z)pdvγ(z)

=Mcγ

∫

Bn

g(z)p(1− |z|2)γ−α(1− |z|2)αdv(z)

< M
cγ
cα

∫

Bn

g(z)pdvα(z) < ∞.

�

Lemma 5.2. Suppose α > −1, f ∈ H(Bn) and δ and γ are real parameters

such that

δ + γ = p+ α− (n+ 1), −1 < γ < p− (n+ 1).

If f ∈ Ap
α, then

I(f) =

∫

Bn

∫

Bn

|f(z)− f(w)|p

|z − w|p
dvδ(z)dvγ(w) < ∞.

Proof. By the proof of the previous lemma, there exists a positive constant C

such that

I(f) ≤2C

∫

Bn

g(z)p dvδ(z)

∫

Bn

dvγ(w)

|1− 〈z, w〉|p

=2C

∫

Bn

g(z)p dvδ(z)

∫

Bn

dvγ(w)

|1− 〈z, w〉|n+1+γ+(δ−α)
.
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Since δ − α > 0, by Lemma 2.2, there exists another positive constant M such

that

I(f) ≤ M

∫

Bn

g(z)p

(1− |z|2)δ−α
dvδ(z) = M

∫

Bn

g(z)p dvα(z) < ∞.

�

Corollary 5.3. Suppose that α > −1, p > n+ 1 + α and f ∈ Ap
α, then

∫

Bn

∫

Bn

|f(z)− f(w)|p

|z − w|p
dvt(z)dvt(w) < ∞,

where t = p+α−(n+1)
2 .

If n = 1, then we obtain the following corollary.

Corollary 5.4. Suppose that α > −1, p > α+ 2 and f ∈ Ap
α(D), then

∫

D

∫

D

|f(z)− f(w)|p

|z − w|p
dAt(z)dAt(w) < ∞,

where t = p+α−2
2 .

The symmetric lifting operator L : H(D) → H(D× D) is defined by

L(f)(z, w) =
f(z)− f(w)

z − w
.

The action of symmetric lifting operator on Ap
α(D) in the cases p > α+ 2 and

p < α+2 was studied in [8]. In the case p = α+2, we have the following result.

Corollary 5.5. Suppose that α > −1, p = α + 2. Then the symmetric lifting

operator maps Ap
α(D) into Ap

γ(D
2), for any γ > α.

Proof. The result follows by letting n = 1 in Theorem 5.1. �

If α > −1, p > α+2 and f ∈ Ap
α(D), then by Corollary 5.4, L(f) ∈ Ap

t (D
2),

which means that the symmetric lifting operator maps f ∈ Ap
α(D) into Ap

t (D
2),

for t = p+α−2
2 . This is the Theorem 4.4 in [8].
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