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ABSTRACT. Let M be an orientable hypersurface in the Euclidean space
R?" with induced metric g and TM be its tangent bundle. It is known
that the tangent bundle 7'M has induced metric g as submanifold of the
Euclidean space R*" which is not a natural metric in the sense that the
submersion 7 : (T'M,g) — (M, g) is not the Riemannian submersion. In
this paper, we use the fact that R*" is the tangent bundle of the Eu-
clidean space R?" to define a special complex structure J on the tangent
bundle R so that (R*",J,(,)) is a Kaehler manifold, where {,) is the
Fuclidean metric which is also the Sasaki metric of the tangent bundle
R*". We study the structure induced on the tangent bundle (T'M,3)
of the hypersurface M, which is a submanifold of the Kaehler manifold
(R*™,J,(,)). We show that the tangent bundle TM is a CR-submanifold
of the Kaehler manifold (R*",J,(,)). We find conditions under which
certain special vector fields on the tangent bundle (T'M,g) are Killing
vector fields. It is also shown that the tangent bundle T.S2"~1 of the

unit sphere S27~1 admits a Riemannian metric g and that there exists a

nontrivial Killing vector field on the tangent bundle (TSZ"’I,g),
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1. INTRODUCTION

Recently efforts are made to study the geometry of the tangent bundle of a
hypersurface M in the Euclidean space R"*! ( cf. [3]), where the authors have
shown that the induced metric on its tangent bundle T'M as submanifold of
the Euclidean space R?"*2 is not a natural metric. In [4], we have extended
the study initiated in [3] on the geometry of the tangent bundle TM of an
immersed orientable hypersurface M in the Euclidean space R™t!. It is well
known that Killing vector fields play an important role in shaping the geometry
of a Riemannian manifold, for instance the presence of nonzero Killing vector
field on a compact Riemannian manifold forces its Ricci curvature to be non-
negative and this in particular implies that on a compact Riemannian manifolds
of negative Ricci curvature there does not exist a nonzero Killing vector field.
The study of Killing vector fields becomes more interesting on the tangent
bundle TM of a Riemannian manifold (M, g) as the tangent bundle TM is
noncompact. It is known that if the tangent bundle TM of a Riemannian
manifold (M, g) is equipped with Sasaki metric, then the verticle lift of a parallel
vector field on M is a Killing vector field (cf. [15]). However if the Sasaki metric
is replaced by the Cheeger-Gromoll metric, then the vertical lift of any nonzero
vector field on M is never Killing (cf. [14]). Note that both Sasaki metric as well
as Cheeger-Gromoll metrics are natural metrics. We consider an orientable real
hypersurface M of the Euclidean space R?" with the induced metric g. Then
as the tangent bundle TM of M is a submanifold of codimension two in R*",
it has induced metric g and this metric g on T'M is not a natural metric as
the submersion 7 : (T'M,q) — (M, g) is not the Riemannian submersion (cf.
[3]). Let N be the unit normal vector field to the hypersurface M and J be
the natural complex structure on the Euclidean space R?". Then we have a
globally defined unit vector field € on the hypersurface given by £ = —JN called
the characteristic vector field of the real hypersurface (cf. [1, 2, 5, 6, 7, 8, 9]),
and this vector field & gives rise to two vector fields ¢" (the horizontal lift)
and &Y (the vertical lift) on the tangent bundle (T'M,g). In this paper, we
use the fact that R*" is the tangent bundle of the Euclidean space R?" and
that the projection 7 : R*™ — R?" is a Riemannian submersion, to define
a special almost complex structure J on the tangent bundle R*" which is
different from the canonical complex structure of the Euclidean space R** and
show that (R*",J,(,)) is a Kaehler manifold, where (,) is the Euclidean metric
on R*". Tt is shown that the codimension two submanifold (TM,g) of the
Kaehler manifold (R*",J,{,)) is a CR-submanifold (cf. [10]) and it naturally
inherits certain special vector fields other than £" and £V, and in this paper we
are interested in finding conditions under which these special vector fields are
Killing vector fields on (T'M,g). One of the interesting outcome of this study
is, we have shown that the tangent bundle 7.S?"~! of the unit sphere S?"~! as


http://dx.doi.org/10.7508/ijmsi.2016.01.002
https://ijmsi.ir/article-1-430-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.7508/ijmsi.2016.01.002 ]

Tangent Bundle of the Hypersurfaces in a Euclidean Space 15

submanifold of R*" admits a nontrivial Killing vector field. It is worth pointing
out that on the tangent bundle 7'S?"~! with Sasakian metric no vertical or
horizontal lift of a vector field is Killing as this will require the corresponding
vector field on $27~! is parallel which is impossible as $?”~! is space of constant
curvature 1. Note that on even dimensional Riemannian manifolds which are
irreducible, it is difficult to find Killing vector fields, where as on products like
§2k=1 5 §2=1 1 §2k—1 » R2I-1 " R2k—1 » R?=1 one can easily find Killing vector
fields. Since the tangent bundle T'S?"~1 is trivial for n = 1,2, 4, finding Killing
vector fields is easy in these dimensions, but for n > 5, it is not trivial.

2. PRELIMINARIES

Let (M, g) be a Riemannian manifold and T'M be its tangent bundle with
projection map w : TM — M. Then for each (p,u) € TM, the tangent space
Tip,)TM = 9 5.y DU (p,u), Where U, ) is the kernel of dm,, ) T(p,u) (TM) —
T,M and $);. is the kernel of the connection map K, .y @ Tipu)(TM) —
T, M with respect to the Riemannian connection on (M, g). The subspaces
A(p.u)s V(p,u) are called the horizontal and vertical subspaces respectively. Con-
sequently, the Lie algebra of smooth vector fields X(7T'M ) on the tangent bundle
TM admits the decomposition X(TM) = $ @ U where § is called the horizon-
tal distribution and U is called the vertical distribution on the tangent bundle
TM. For each X, € T,M, the horizontal lift of X, to a point z = (p,u) € TM
is the unique vector X € §, such that dr(X") = X, o7 and the vertical
lift of X, to a point z = (p,u) € TM is the unique vector X € U, such that
X?(df) = X,(f) for all functions f € C°(M), where df is the function defined
by (df)(p,w) = u(f). Also for a vector field X € X(M), the horizontal lift of X
is a vector field X" € X(T'M) whose value at a point (p,u) is the horizontal lift
of X(p) to (p,u) , the vertical lift XV of X is defined similarly. For X € X(M)
the horizontal and vertical lifts X" XV of X are uniquely determined vector
fields on T'M satisfying

dﬂ-(X.?) = XTr(z)a K(X?) = Oa dﬂ-(X:) = Oﬂ K(X;}) = Xﬂ'(z)

Also, we have for a smooth function f € C°°(M) and vector fields X,Y €
X(M), that (FX)" = (fom)X", (fX)" = (fom)X?, (X +Y)h = Xh + Y
and (X +Y)" = X"+ Y". If dimM = m and (U, ) is a chart on M with
local coordinates x',z2,..., 2™, then (7= 1(U),¢) is a chart on TM with lo-
cal coordinates z!, 22, ..., 2™, y',y?,...,y™, where ' = 2’ o 7w and 3 = da’,
i=1,2,....m.

A Riemannian metric g on the tangent bundle T'M is said to be natural met-
ric with respect to g on M if g, ., (X", Y") = g,(X,Y) and g, ,, (X", Y") = 0,
for all vectors fields X,Y € X(M) and (p,u) € TM, that is the projection map
m:TM — M is a Riemannian submersion.
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Let M be an orientable hypersurface of the Euclidean space R?" with im-
mersion f : M — R?" and TM be its tangent bundle. Then as F = df :
TM — R*" = TR?" is also an immersion, TM is an immersed submanifold
of the Euclidean space R*". We denote the induced metrics on M, TM by
g, g respectively and the Euclidean metric on R?" as well as on R*" by ().
Also, we denote by V,V, D and D the Riemannian connections on M, TM,
R?" and R*" respectively. Let N and S be the unit normal vector field and
the shape operator of the hypersurface M. For the hypersurface M of the
Euclidean space R?" we have the following Gauss and Weingarten formulae

DxY =VxY +(S(X),Y)N, DxN = -S(X), X,Y € X(M) (2.1)

where S is the shape operator (Weingarten map). Similarly for the submanifold
TM of the Euclidean space R*" we have the Gauss and Weingarten formulae

DpF = ViF + h(E,F), DpN = —8(E) + V5N (2.2)

where E, F € X(TM), V™ is the connection in the normal bundle of M and
Sﬁ denotes the Weingarten map in the direction of the normal N and is related
to the second fundamental form h by

(MX,Y),N) =7g(Sx(X),Y) (2.3)

Also we observe that for X € X(M) the vertical lift X* of X to TM,
as XV € kerdmw, where w : TM — M is the natural submersion, we have
dr(X") = 0 that is df ( dr(X")) = 0 or equivalently we get d(f o 7)(X") =0,
that is d(7o F)(X?) = 0 (7 : TR*™ — R?"), which gives dF'(X") € ker d7 = 0.

Now we state the following results which are needed in our work.

Lemma 2.1. [3] Let N be the unit normal vector field to the hypersurface M
of R?™ and P = (p,X,) € TM. Then the horizontal and vertical lifts Y, Y5
of Y, € T,M satisfy

dFp(YE) = (dfp(Yp)" + Ve, dFp(YE) = (dfy(Y}))"

where Vp € Vp s given by Vp = (S,(X,),Yp) Np, Np being the vertical lift
of the unit normal N to with respect to the tangent bundle 7 : R*" — R?".

Lemma 2.2. [3] If (M, g) is an orientable hypersurface of R?", and (T M,7q)
is its tangent bundle as submanifold of R*™, then the metric g on TM for
P = (p,u) € TM, salisfies:

(4) §P(X1}§, Ylg) = 9p(Xp, Yp) + 9p(Sp(Xp), ) gp(Sp(Yp), u).

(i1) Fp (X}, YE) = 0.

(1) g(X",Y") = gp(Xp, Yp).

Remark 2.3. It is well known that a metric § defined on T'M using the Rie-
mannian metric g of M (such as Sasaki metric, Cheeger-Gromoll metric) are
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natural metrics in the sense that the submersion 7 : (T'M,g) — (M, g) be-
comes a Riemannian submersion with respect to these metrics. However, as
seen from above Lemmas, the induced metric on the tangent bundle TM of a
hypersurface M of the Euclidean space R?", as a submanifold of R*" is not a
natural metric because of the present of the term g, (S,(X},), ©)gp(Sp(Yy), u) in
the inner product of horizontal vectors on T'M. Moreover, note that the for an
orientable hypersurface M of the Euclidean space R2", the vertical lift NV of
the unit normal is tangential to the submanifold TM of R*" as seen in 2.1

In what follows, we drop the suffixes like in g, (S,(X},), v) and and it will be
understood from the context of the entities appearing in the equations.

Theorem 2.4. [3] Let (M, g) be an orientable hypersurface of R*", and (T M,gq)
be its tangent bundle as submanifold of R*™. If V and V denote the Riemann-
ian connections on (M, g) and (TM,q) respectively, then
(i) VxnY" = (VxY)" = Z(R(X,Y)u)",
(ii) VxoY" = g(S(X),Y)omNV
(iii) Vx. YV =0, (i) VxnY? = (VxY)’" +g(S(X),Y)onm N.

Lemma 2.5. [4] Let TM be the tangent bundle of an orientable hypersurface
M of R?>". Then for X,Y € X(M),
(1) h(X",Y") =0,
(ii) h(XV,Y") =0,
(ii7) h(X", Y") = g(S(X),Y)om N".

Lemma 2.6. [4] For the tangent bundle TM of an orientable hypersurface M
of R*™ and X € X(M), we have

(i) Dx+N? =0,
(1) Dx+N" =0,
(iii) DxnN? = —(S(X))?, (iv) Dxn N" = —(S(X))".

Let J be the natural complex structure on the Euclidean space R?", which
makes (R?", J, (,)) a Kaehler manifold. Then on an orientable real hypersurface
M of R?" with unit normal N, we define a unit vector field £ € X(M) by
¢ = —JN, with its dual 1-form n(X) = g(X, &), where g is the induced metric
on M. For X € X(M), we express JX = p(X) 4+ n(X)N, where p(X) is the
tangential component of JX, and it follows that ¢ is a (1,1) tensor field on M,
and that (¢,&,n,g) defines an almost contact metric structure on M (cf. [5],
[8], [9]), that is

P’ X = —X+n(X)¢, (&) =1, 109 =0, (&) =0
and
9(pX,0Y) = g(X,Y) = n(X)n(Y), X,Y € X(M)

Moreover, we have the following.
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Lemma 2.7. [8] Let M be an orientable real hypersurface of R?*™. Then the
structure (¢,€,m,g) on M satisfies

(1) (Vx@)(Y)=n(Y)SX - g(SX,Y)¢,

(i1) Vx&=9SX, X,Y € X(M).
3. A STRUCTURE ON (T'M,9)

We know that the Euclidean space R*" has many complex structures, how-
ever in this section we treat R*" as the tangent bundle of R*" and consider
a specific complex structure on the Euclidean space R*". Let © : R'" =
TR?>" — R?" be the submersion of the tangent bundle of R?”. Then it is easy
to show that the Euclidean metric (,) on the tangent bundle R*" is Sasaki
metric and using the canonical almost complex structure J of R?", we define
J: X(R*™) — X(R*™) by

J(E") = (JE)", J(E")=(JE)', E€ZX(R™)
and it is easily follows that J is an almost complex structure, satisfying
(JE,JF) = (E, F) with respect to the Euclidean metric (,) on R*" and that
(DpJ)(F) = 0, E,F € X(R'™) that is (R*,J,(,)) is a Kaehler manifold.
Regarding the complex structure J defined above, we have the following
Lemma 3.1. Let 7@ : R*™ — R2" be the submersion of the tangent bundle
R*" = TR?". Then complex structure J on R*" satisfies
Jodr =drolJ

Proof. Take X € X(R?"), then for the horizontal lift X" we have:

Jodr(X") = J(dm(X") =JX o7
and

dio J(X") =dr(JX)" =JX o7
which proves

Jodm(X") = dmo J(X")
Similarly for the vertical lift X"we have
Jodw(X") = J(dm(X"))=0
and
dro J(XV) =dm(JX)" =0

This proves the Lemma. (|
Remark 3.2. If M is an orientable real hypersurface of the Euclidean space
R?" with immersion f, then F = df is the immersion of the tangent bundle
TM into the Euclidean space R*" and as immersions are local embeddings,

in general, we identify the local quantities on submanifold with those of the
ambient space for instance we identify df (X) with X for X € X(M). However,
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while dealing with the immersion F' of TM in R*" one need to be cautious
specially while dealing with the horizontal lifts (cf. 2.1). Therefore in what
follows, we shall bring dF in to play whenever it is needed specially in the case
of horizontal lifts.

Observe that if M is an orientable real hypersurface of the Euclidean space
R?" with unit normal vector field N, then we know that horizontal lift N" is
a unit normal vector field to the submanifold TM of R*" and that the vertical
lift NV € X(TM) (cf.[1]). We have

JN" = (JN)" = ~(df (€))" = —dF(€") + g(S(€),w)N" € X(TM) ~ (3.1)
and

JNV = (JN)" = —£" € X(TM) (3.2)

Let M be an orientable real hypersurface of the Kaehler manifold (R?", J, (,)).

Then as TM is submanifold of the Kaehler manifold (R*"*,J, (,)), we denote

by T'(T+TM) the space of smooth normal vector fields to TM. The restriction

of the complex structure J on R*" to X(T'M) and I'(T*+TM) can be expressed
as

J(E)=%(E)+¥(E), JI(N)=G(N)+x(N), Ee€X(TM),NeT(T+*TM)

where B(E), G(N) are the tangential and ¥(E), X(NN) are the normal compo-
nents of JE, and J(N) respectively. Note that the horizontal lift N of the unit
normal N to the hypersurface M is normal to TM that is N* € T'(T+TM),
where as the vertical lift NV € X(T'M).

Lemma 3.3. Let TM be the tangent bundle of an orientable real hypersurface
of R?™. Then for X € X(M),

PX") = (p(X)" = g(S(X), w)€”,  B(XY) = (¢(X))” +n(X) oTN"
P(X") =n(X)onN", P(X")=0
Proof. Note that for the horizontal lift X" we have
JX" = TJdF(X") =T ((df(X))" + g(SX,u) o 7N")
(Jdf (X)) + g(SX,u) o (JN)"
= (X +n(X)N)" - g(SX,u) ome"
= (p(X)" — g(SX,u) o mE" + y(X) o wN"

which together with the definition JX" = ®(X") 4+ (X"), on equating tan-
gential and normal components give

PX") = (p(X)" — g(S(X), u)e” and P(X") = n(X) o 7N"

Similarly for the vertical lift X", we have

TXY=3(X") +%(X") = (JX)" = (pX + 5(X)N)"
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which gives
(FX") +B(X") = (¢X)” +n(X) 0 TN"
Comparing the tangential and normal components we conclude
P(XY) = (p(X))" +0(X)onNY, and $(X")=0.
|

We choose a unit normal vector field N* € I'(T+TM) such that {N*, N"}
is a local orthonormal frame of normals for the submanifold 7M. It is known
that N* is vertical vector field on the tangent bundle R*" (cf. [1]). Since,
(JN*,N*) =0, (JN*,N") = (N*,&") = 0, it follows that JN* € X(TM)
and we define unit vector field ¢ € X(T'M) by

(=—-JN* (3.3)
Now, for any normal vector field N € I'(T*+TM), we have
N = (N,N*) N* + (N,N") N"

which together with equations (3.1), (3.2) and (3.3) gives X(N) = 0 and that

J(N) € X(TM), isgiven by

J(N)=(J(N),()¢+ (J(N),T)T (3.4)
where T' € X(T'M), is given by
T =¢" = g(S(€),u)N" = —JN" (3:5)

Also, using equation (3.2), we have
—€7 = TN" = B(N") + T(N")
which gives
B(NY) = —£" and P(N?) =0 (3.6)
Moreover, we have
?(¢) =0 and ¥(¢) = N*, (") = N" (3.7)

If we denote by «, 8 the smooth 1-forms on T'M dual to the vector field ¢ and
T respectively, then for E € X(T'M), it follows that

J(U(E)) = —a(E) — B(E)T
and consequently, operating J on J(E) = §(E) +¢(E), E € X(TM), we get
Pr=-I+a®(+BxTandpop =0 (3.8)

Using Lemma 2.1 and equations (3.3), (3.5), (3.6), (3.8), we see that the vector
fields ¢, T and 1-fomrs «, Ssatisfy

?()=0,%(T)=0,9(¢,T)=0,a0p=0,30%=0 (3.9)
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Also, as g is the induced metric on the submanifold 7'M and J is skew sym-
metric with respect to the Hermitian metric (, ), we have

?(@(E%F) = —g(E@(F)% E,F e X(TM) (3.10)
Then using equations (3.8), (3.9) and (3.10), we have
9(@(E),9(F)) =9(E, F) — a(E)(F) = B(E)B(F), E,FeX(TM) (3.11)
Thus we have proved the following

Lemma 3.4. Let TM be the tangent bundle of an orientable real hypersurface

of R?>"™. Then there is a structure (p,(,T,a, 3,g) similar to contact metric

structure on T M, where @ is a tensor field of type (1,1), ¢, T are smooth vector

fields and o, B are smooth 1-forms dual to {,T with respect to the Riemannian

metric g satisfying

7’ = ~I+a®(+paT, 5(() =0, p(T) =0, acp =0, fop =0, (¢, T) =0
9(@(E),o(F)) =g(E, F) — a(E)a(F) = B(E)B(F), E,FeX(TM).

In the next Lemma, we compute the co-variant derivatives of the tensor .

Lemma 3.5. Let (g,(, T, a, 3,g) be the structure on the tangent bundle T M
of an orientable real hypersurface M of the FEuclidean space R*™. Then

(i) (Vxr@) (V") = {(Vxp) )} = {X (9(SY; u) + g(SY,u)JSX)}"
@) (ToP)T) =0
(i) (VxoP)(Y?) = 0, (VxuB)(Y") = g (SX,pY) o mNY 4 (SX,Y) ome.
Proof. Using the definition of J, Lemma 2.1 and Lemma 3.3 together with
equation (3.1), we get for X,Y € X(M)
JYh = JdF(Y") =7 ((df(Y))“ + g(SY,u) 0 WN“)

= (oY +n(Y)N)" = g(SY, u) o w&”
= P(Y") +n(¥)orN"

which gives

DxndY" = Diapxyigsxaonne) (@ (V") +n(Y) onN")
= Dgrixyr? (Y") + X(n(Y)) o aN" +9(Y) 0 7D 4y N"

+9(SX,u) oDy (( (Y ))h g(S(Y), u)o7r§”) 10
+9(SX,u) omn(Y) o wD o N"

Note that the tangent bundle TR?® = R*" has Sasaki metric and thus using

Lemma 7.2 of [10] (keeping in view that R?" is flat), in the above equation, we
get

DxnJY" =V 05 (V") + H(X", 5 (Y") + X(n(Y)) o aN" — (V) o (SX)"
(3.12)
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Similarly we have

TDxnY" = 7 (E((df(x))ug(sxﬂ)mvu) ((df(Y))h +g(SY,u) o wN”))

= J{VxnY" + h(X",Y") + X (g(SY,u) o 7N’ + g(SY,u) o (DxN)"

+ g(SX,u) oDy (dfY)" +0 + o}

2 (VxnY") + 9 (VxnY™) + Th(X", Y") — X (g(SY,u) o &
—g(SY,u)omJ (SX)"

7 (Vxr Y™ + 9 (Vxn V") — g(SX,Y) o mé" — X (g(SY,u) o m€”
—g(SY,u)om (SX)" — g(SY,u) o mn(SX)N" (3.13)

where we used Lemmas 2.3, 2.4 and Lemma 7.2 in [10]. Now as (R, J,(,))
is a Kaehler manifold, the equations (3.12) and (3.13) on comparing tangential
we get

(Vxn®) (V") = {(Vxp) (V)Y = {X (9(SY,u) + 9(SY, u) JSX)}"
which proves (i).
Now, using A(X?,Y"?) = 0 and SE(Y@)XU = 0 together with Dx»JYV =
JDx»Y", and comparing tangential components, we immediately arrive at
(Ve P)(Y") =0
Next, we have V. 3(Y") = V. ((w)h — g(SX,u)o ngv) = Vxo (pY) =

g(SX,9Y)orNY and @ (VxoY") = g (SX,¢Y)onp (N) = —g (SX,Y)omg".
Thus, we get

(Vxo®) (Y") = g(SX,pY)onN" + g (SX,Y) o m&"
Finally, using h(X",Y") = 0 and Sy, X" = 0 together with DxnJY" =
JD 1Y, and comparing tangential components, we immediately arrive at
(Vxr@)(Y") =0
O

Lemma 3.6. Let (3,(, T, a, (3,g) be the structure on the tangent bundle T M
of an orientable real hypersurface M of the Euclidean space R?™. Then for
EecXx(TM),

V¢ = (Sn+(B) =T (VeN*) . h(E.C) =¥ (Sn+(E))

Vel =% (Syn(E)) -7 (vgNh) . WE,T) =0 (Syr(E))


http://dx.doi.org/10.7508/ijmsi.2016.01.002
https://ijmsi.ir/article-1-430-en.html

[ Downloaded from ijmsi.ir on 2026-02-19 ]

[ DOI: 10.7508/ijmsi.2016.01.002 ]

Tangent Bundle of the Hypersurfaces in a Euclidean Space 23

Proof. Using equation (2.2), we have
Ve¢ = Dg¢—hE\)
= —JDgN* —h(E,()
= T(Sn-(B) -7 (v;zv*) — W(E, ()
= $(Sn-(B) + % (Sn-(B) = T (VeN*) = h(E, )

Since J(N) € X(TM) for each normal N € I'(T+TM), equation tangential
and normal components in above equation, we get the first part. The second
part follows similarly using 7' = —JN". (|

Now, we prove the following:

Theorem 3.7. The tangent bundle TM of an orientable real hypersurface
M of the Euclidean space R*™ is a CR-submanifold of the Kaehler manifold
(R*™,J,(,)).

Proof. Use the structure (3,(,T,a,3,g) on the submanifold TM of R*" to
define the distribution D by

D={FeX(TM): a(F)=p(F)=0}
and D+ be the distribution spanned by the orthogonal vector fields ¢ and 7.
Note that ¢ is unit vector field on T'M and the length of the vector field T
satisfies
IT)* =1+ 29(S(),u)* > 1
which shows that D' is 2-dimensional distribution on TM and that JD+ =

[(T+TM). Tt is easy to see that D and Dt are orthogonal complementary
distributions and that dim D = 4(n — 1). Note that for E € X(T'M), we have

Y(B) = (Y(E),N*) N* + ($(E), N") N" = a(E)N* + B(E)N"

and consequently if £ € D, then above equation gives JE = ®E which is
orthogonal to both ¢ and T and that JE € D, which implies JD = D. This
proves that TM is a CR-submanifold of the Kaehler manifold (R*",J, (,)) (cf.
[8])- O

4. KiLLING VECTOR FIELDS ON T'M

Let T'M be the tangent bundle of an orientable real hypersurface M of the
Euclidean space R?". Recall that a vector field ¢ € X(T'M) on the Riemannian
manifold (T'M,7) is said to be Killing if

(£9) (E,F)=0, E,FecX(TM)

where £ is the Lie derivative with respect to the vector field <. We have
seen in previous section that the tangent bundle (T'M,g) admits a structure
(@,¢(, T, a, 3,7), that is similar to the almost contact structure. In this section
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we are interested in finding conditions under which the special vector fields ¢
and T are Killing vector fields and as a particular case we get that the tangent
bundle (TS2"’1 , §) of the unit sphere S?"~! in the Euclidean space R?" admits
a nontrivial Killing vector field.

Theorem 4.1. Let (¢,(, T, , 8,9) be the structure on the tangent bundle T M
of an orientable real hypersurface M of the Euclidean space R®". Then the
vector field ¢ is Killing.
Proof. First note that on taking inner product with N* in each part of Lemma
2.5, we conclude that Sy-(X") = 0, Sy«(XV) = 0, X € X(M) and conse-
quently,

Sn«(E)=0, EcX(TM) (4.1)
Also using second part of equation (2.2) in (ii) and (iv) of Lemma 2.4, we
conclude that vgNh =0, E € X(TM), that is N" is parallel on the normal

bundle of TM. Moreover, we have
VyN* = <V;N*,Nh> Nt = — <N*,V§Nh> Nt =0

that is N* is parallel in the normal bundle of TM. Thus using equation (4.1)
in Lemma 3.5, it follows that ( is a parallel vector field and consequently, it is
a Killing vector field. (I

Theorem 4.2. Let (3,(, T, a, 8,G) be the structure on the tangent bundle T M
of an orientable real hypersurface M of the Euclidean space R*™. Then the
vector field T is Killing if and only if the following condition holds

G((@oSyn—Synop) (X"),Y") =0, XY eX(M)

Proof. Since N" is parallel in the normal bundle of TM, by Lemma 3.5, we
have

VET =p (?Nh (E)) , Ee %(TM) (42)
Also using Lemma 2.4, we conclude that

San(XY) =0, Syn (XM = (S(X)", X e x(M) (4.3)

Then using skew-symmetry of the tensor 3, and equations (4.2) and (4.3) to-
gether with Lemma 3.3, we immediately arrive at

(£79) (X, Y")=0 (4.4)
(£79) (X",Y") = g(@o Sy (X").Y") =7 (Swn (X"), 2 (Y"))
= —g(Snr (X", (0 (V)" +n(X)onNY) =0 (4.5)
(£79) (X", Y") =g ((@oSyn — Syn 0 P) (Xh) YM) (4.6)

and the equations (4.4)-(4.6) prove the Theorem.
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Consider the unit sphere S?7~! in the Euclidean space R?", whose shape
operator is given by S = —I. Using Lemma 2.4, we get on the tangent bundle
TS~ that

S (XM = (S(X))" = =X",  Syn(X") =0
Then the Lemma 3.3 together with above equation, gives

(B0 —Swe 07) (X7) = 3 (X") — San ((p(X))" — g(S(X), ) o 7€")
—g(X,u)ome”, X € xX(s* 1)

and consequently,
G(([@oSyn—Synop) (X"),Y") =0, XY ex(s*1)
Thus as a particular case of the Theorem 4.2, we have

Corollary 4.3. Let (¢,(,T,«,3,9) be the structure on the tangent bundle
TS?=1 of the unit sphere S>"~1 in the Euclidean space R*™, n > 1. Then the
vector field T is a nontrivial Killing vector field.

Proof. It remains to be shown that T is nontrivial. Since, N” is parallel in the
normal bundle of 7'S?"~!, by Lemmas 2.4 and 3.5, we have

VT =-5(X"), Xex(s™ (4.7)

where we used the fact that the shape operator S of the unit sphere $27~1
is given by S = —I. The Lemma 3.4 gives the rank of ¥ is 4(n — 1) and
consequently, equation (4.7) gives that the Killing vector field T' is not parallel,
that is 7" is a nontrivial Killing vector field. ]
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