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Abstract. In this paper, we introduce the notions of (�,⊕)-derivations

and (�,�)-derivations for MV -algebras and discuss some related results.

We study the connection between these derivations on an MV -algebra

A and the derivations on its boolean center. We characterize the iso-

tone (�,⊕)-derivations and prove that (�,�)-derivations are isotone. Fi-

nally we determine the relationship between (�,⊕)-derivation and (�,�)-

derivation for MV -algebras.
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1. Introduction

The concept of an MV -algebra was introduced by C.C. Chang in [7] to prove

the completeness theorem for the �Lukasiewicz calculus. The properties of an

MV -algebra were presented in [5], [8], [9],[15], [4]. The notion of derivation,

introduced from the analytic theory, is helpful for the research of structures
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and properties in algebraic systems. Several authors [1], [2], [3], [14], [16] have

studied derivations in rings and near rings. Also Jun and Xin [13] and J. Zhan

and Y. Lin Liu [19] applied the notion of derivation in rings and near rings

theory to BCI-algebras (some properties of BCI-algebra are in [12]). Szász

introduced the concept of derivation on lattices in [17]. Recently some authors

[6], [10] and [18] studied the properties of derivations for lattices.

In this paper, we define and study two kinds of derivations on MV -algebras

which comes in analogy with Leibniz,s formula for derivations in rings. The

paper is organized as follows.

In section 2, the basic definitions and results are summarized. In section 3, we

introduce (�,⊕)-derivations on MV -algebras and study their properties. We

show they are not isotone in general. Some conditions are obtained such that

(�,⊕)-derivations are isotone. In section 4, we introduce the notion of (�,�)-

derivation on MV -algebras and investigate some of its properties. Moreover,

this derivation is isotone. We show that if d is a (�,�)-derivation on an MV -

algebra A, then the collection of fix points of this derivation(Fixd(A)) is an

ideal of B(A), the boolean center of A. In particular, we prove that if d(1) = 1,

then Fixd(A) = B(A) = A. Finally, we obtain some relations between these

derivations.

2. Preliminaries

Definition 2.1. [7] An MV -algebra is an algebra (A,⊕,∗ , 0) of type (2, 1, 0)

satisfying the following equations:

(MV 1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,

(MV 2) x⊕ y = y ⊕ x,

(MV 3) x⊕ 0 = x,

(MV 4) x∗∗ = x,

(MV 5) x⊕ 0∗ = 0∗,

(MV 6) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,

for all x, y, z ∈ A.

Example 2.2. [7, 9] Consider the real unit interval [0, 1] and for all x, y ∈ [0, 1],

define x ⊕ y = min{1, x + y} and x∗ = 1 − x. Then ([0, 1],⊕,∗ , 0) is an

MV -algebra. The rational numbers in [0, 1] and the n-element set Ln =

{0, 1/(n − 1), ..., (n − 2)/(n − 1), 1}, for each integer n ≥ 2, yield examples

of subalgebras of [0, 1].

In the rest of this paper, we denote an MV -algebra (A,⊕,∗ , 0) by A.

On each MV -algebra A, we define the constant 1 and the operations � and

� as follows: 1 = 0∗, x� y = (x∗ ⊕ y∗)∗, x� y = x� y∗.
For any two elements x and y of A, define x ≤ y if and only if x � y∗ = 0.

Then ≤ is a partial order, called the natural order of A.
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Proposition 2.3. [9] On an MV -algebra A, the natural order determines a

bounded distributive lattice structure. Specifically, the join x ∨ y and the meet

x ∧ y of the elements x and y are given by:

x ∨ y = (x� y) ⊕ y = (x� y∗) ⊕ y

and

x ∧ y = (x∗ ∨ y∗)∗ = x� (x∗ ⊕ y) = x� (x � y).

We denote this distributive lattice with 0 and 1 by L(A).

Theorem 2.4. [5, 9] Let A be an MV -algebra and x, y, z ∈ A. Then the

following hold:

(c1) x⊕ x∗ = 1, x� x∗ = 0,

(c2) x� 0 = x, 0 � x = 0, x� x = 0, 1 � x = x∗, x� 1 = 0,

(c3) x ≤ y if and only if y∗ ≤ x∗,
(c4) If x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z,

(c5) x� y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x⊕ y,

(c6) x⊕ (y ∧ z) = (x⊕ y) ∧ (x ⊕ z),

(c7) x� (y ∨ z) = (x� y) ∨ (x � z),

(c8) x⊕ y = y if and only if x ∧ y∗ = 0,

(c9) If x� y = x� z and x⊕ y = x⊕ z, then y = z,

for all x, y, z ∈ A.

For any MV -algebra A, write B(A) as an abbreviation of set of all com-

plemented elements of L(A). Elements of B(A) are called boolean center of

A.

Theorem 2.5. [9] For every element x in an MV -algebra A, the following

conditions are equivalent:

(i) x ∈ B(A),

(ii) x ∨ x∗ = 1,

(iii) x ∧ x∗ = 0,

(iv) x⊕ x = x,

(v) x� x = x,

(vi) x⊕ y = x ∨ y, for all y ∈ A,

(vii) x� y = x ∧ y, for all y ∈ A.

Theorem 2.6. [5] Let A be an MV -algebra, a ∈ B(A) and x, y ∈ A. Then:

(c10) a ∧ (x⊕ y) = (a ∧ x) ⊕ (a ∧ y),

(c11) a ∨ (x⊕ y) = (a ∨ x) ⊕ (a ∨ y).

Definition 2.7. [9] An ideal of an MV -algebra A is a non-empty subset I of

A satisfying the following conditions:

(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,

(I2) If x, y ∈ I, then x⊕ y ∈ I.
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Definition 2.8. [18] Let L be a lattice and d : L → L be a function. Then d

is called a derivation on L, if d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)).

3. (�,⊕)-derivations

In this section, we define a (�,⊕)-derivation on an MV -algebra A. Then

we obtain some characterizations of a (�,⊕)-derivation.

Definition 3.1. Let A be an MV -algebra and d : A → A be a function. We

call d a (�,⊕)-derivation on A, if it satisfies the following condition:

d(x� y) = (d(x) � y) ⊕ (x� d(y))

for all x, y ∈ A.

Now we give some examples and present some properties of (�,⊕)-derivations

on MV -algebras.

Example 3.2. (1) Let A be an MV -algebra. We define a function d : A → A

by d(x) = 0, for all x ∈ A. Then d is a (�,⊕)-derivation on A, which is called

the zero (�,⊕)-derivation.

(2) Consider L3 = {0, 1/2, 1}. We can see that identity function I on L3

is not (�,⊕)-derivation. But d(0) = d(1) = 0, and d(1/2) = 1/2 is a (�,⊕)-

derivation on L3.

Proposition 3.3. Let A be an MV -algebra and d be a (�,⊕)-derivation on

A. Then the following hold:

(1) d(0) = 0,

(2) d(x) ≤ x, for all x ∈ A,

(3) if d(x) = 1, then x = 1,

(4) d(x∗) ≤ (d(x))∗,
(5) if I is an ideal of A, then d(I) ⊆ I,

(6) d(x) � d(y) ≤ d(x� y) ≤ d(x) ⊕ d(y) ≤ x⊕ y, for all x, y ∈ A

(7) (d(x))n ≤ d(xn), for all n ≥ 1.

Proof. (1) Put x = 0 in Definition 3.1. Then we have

d(0) = d(0 � 0) = (d(0) � 0) ⊕ (0 � d(0)) = 0.

(2) By part (1) and Definition 3.1, we get that

0 = d(0) = d(x � x∗) = (d(x) � x∗) ⊕ (x� d(x∗)).

Then d(x) � x∗ = 0 and x� d(x∗) = 0, and so d(x) ≤ x.

(3) The proof is clear, by part (2).

(4) It can conclude by part (2) and (c3).

(5) and (6) can be easily proved by part (2).

(7) The proof follows from part (6). �
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In the following theorems, we will study the connection between the (�,⊕)-

derivations on an MV -algebra and the derivations on its boolean center. First,

we will prove that the (�,⊕)-derivations on the boolean center of an MV -

algebra are lattice derivations.

Proposition 3.4. Let A be an MV -algebra and d be a (�,⊕)-derivation on

A. Then

(1) d(B(A)) ⊆ B(A).

(2) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)), for all x, y ∈ B(A).

Proof. (1) Let x ∈ B(A). By Theorem 2.5, d(x) = d(x�x) = (d(x)�x)⊕ (x�
d(x)). Since x ∈ B(A) and d(x) ≤ x, then x� d(x) = x ∧ d(x) = d(x). Hence

d(x) = d(x) ⊕ d(x). We obtain that d(x) ∈ B(A).

(2) Let x, y ∈ B(A). By Theorem 2.5 and (1),

d(x ∧ y) = d(x� y) = (d(x) � y) ⊕ (x � d(y)) = (d(x) ∧ y) ∨ (x ∧ d(y)).

�

By the above theorem part (2) we conclude that every (�,⊕)-derivation on

A is a (�,⊕)-derivation on the boolean center of A.

Corollary 3.5. Let A be an MV -algebra such that B(A) = {0, 1} and d be a

(�,⊕)-derivation on A. Then d(1) = 0 or d(1) = 1.

Proof. Since B(A) = {0, 1}, we have d(1) ∈ B(A) by part (2) of the above

proposition. Hence d(1) = 0 or d(1) = 1. �

In the following example , we will show that a (�,⊕)-derivation is not a

derivation for lattices in general.

Example 3.6. Consider L4 = {0, 1/3, 2/3, 1} and define a map d on L4 by:

d(0) = d(1) = d(1/3) = 0, d(2/3) = 1/3.

Then d is a (�,⊕)-derivation, and also d(2/3∧1/3) = d(1/3) = 0, d(2/3)∧1/3 =

1/3 and d(1/3) ∧ 2/3 = 0. Thus

d(2/3 ∧ 1/3) �= [d(2/3) ∧ 1/3] ∨ [2/3 ∧ d(1/3)].

By Proposition 3.4, we can obtain a class of maps d : A → A on an MV-

algebra A such that they are not (�,⊕)-derivation on A. See the following

proposition.

Proposition 3.7. Let A be an MV -algebra and a ∈ A − {0, 1}. Then the

function d : A → A, by d(x) = a, for all x ∈ A − {0} and d(0) = 0 is not a

(�,⊕)-derivation on A.
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Proof. Suppose that d is a (�,⊕)-derivation on A. We have two cases:

case 1: a �∈ B(A). Since d(1) ∈ B(A) by Proposition 3.4 part (1), then

a ∈ B(A), which is a contradiction.

case 2: a ∈ B(A). Then

0 = d(a� a∗) = (d(a) � a∗) ⊕ (a� d(a∗)) = (a� a∗) ⊕ (a� a) = a2 = a,

which is a contradiction. �

Lemma 3.8. Let d be a (�,⊕)-derivation on an MV -algebra A. Then x ∧
d(1) ∧ (d(x))∗ = 0 and so x ∧ d(1) ∧ x∗ = 0.

Proof. Since d(x) = d(x) ⊕ (x� d(1)), then by (c8) of Theorem 2.4, we obtain

(x� d(1)) ∧ (d(x))∗ = 0.

We have d(1) ∈ B(A) by part (1) of Proposition 3.4, then

x ∧ d(1) ∧ (d(x))∗ = 0.

Also x∗ ≤ (d(x))∗ implies that x ∧ d(1) ∧ x∗ = 0. �

Proposition 3.9. Let d be a (�,⊕)-derivation on an MV -algebra A. Then

the following hold:

(1) if x ≤ d(1), then d(x) = x and x ∈ B(A),

(2) if d(1) ≤ x, then d(1) ≤ d(x),

(3) d(d(1)) = d(1).

Proof. (1) Let x ≤ d(1). Then by Lemma 3.8, we get that x ∧ (d(x))∗ = 0 and

so x ≤ d(x) ≤ x. Thus d(x) = x. Also by Lemma 3.8, x ∧ x∗ = 0. Hence

x ∈ B(A), by Theorem 2.5.

(2) Let d(1) ≤ x. Then by Lemma 3.8, (d(x))∗�d(1) = 0 and so d(1) ≤ d(x).

(3) The proof follows from part (1). �

Let A be an MV -algebra which is not a boolean-algebra. By the above

theorem, we conclude that the map d on A where d(1) = 1 is not a (�,⊕)-

derivation on A. Also, we have the following corollary:

Corollary 3.10. Let d be a (�,⊕)-derivation on a boolean algebra A. Then

d(1) = 1 if and only if d is identity function.

Theorem 3.11. Let A be an MV -algebra which is not a boolean algebra. Then

there is no one to one or onto (�,⊕)-derivation on A.

Proof. Let d be a (�,⊕)-derivation on A. If d is onto, then by Proposition 3.3

part (3), we get that d(1) = 1 which is a contradiction. If d is one to one, then

by Proposition 3.9 part (3), d(1) = 1 which is a contradiction. �
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Proposition 3.12. Identity function I on an MV -algebra A is a (�,⊕)-

derivation if and only if A is a boolean algebra.

Proof. Let identity function I on A be a (�,⊕)-derivation. Then

x = I(x) = I(1 � x) = (I(1) � x) ⊕ (I(x) � 1) = x⊕ x,

for all x ∈ A. Therefore A = B(A). The proof of the converse is easy. �

Corollary 3.13. Let d be a (�,⊕)-derivation on a boolean algebra A. Then

the following are equivalent:

(a) d is identity function,

(b) d is onto,

(c) d is one to one

Proof. The proof follows from Proposition 3.3 part (3), Proposition 3.9 part

(3), Proposition 3.12 and Corollary 3.10. �

Proposition 3.14. Let a ∈ A and da : A → A be defined by da(x) = a � x,

for all x ∈ A. Then da is a (�,⊕)-derivation if and only if da(A) ⊆ B(A).

Proof. Let da be a (�,⊕)-derivation. Then

a� x = da(x) = da(x� 1) = (da(x) � 1) ⊕ (da(1) � x) = (a� x) ⊕ (a� x),

for all x ∈ A that is da(A) ⊆ B(A). Conversely, let da(A) ⊆ B(A). Now we

show that da is (�,⊕)-derivation.

da(x� y) = a� (x� y)

= (a� (x� y)) ⊕ (a� (x� y))

= (da(x) � y) ⊕ (x� da(y)).

�

By Proposition 3.14, we get the following corollary.

Corollary 3.15. Let A be a boolean algebra and a ∈ A. Then da(x) = x � a

is a (�,⊕)-derivation on A.

Let d : A → A be a function. If x ≤ y ,then d(x) ≤ d(y), we call d an isotone

function.

Consider the (�,⊕)-derivation d in Example 3.6, we can see that d is not

isotone, because d(2/3) � d(1).

Example 3.16. Let A = {0, a, b, c, e, 1}. Define
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� 0 a b c e 1

0 0 0 0 0 0 0

a 0 a 0 a 0 a

b 0 0 0 0 b b

c 0 a 0 a b c

e 0 0 b b e e

1 0 a b c e 1

∗ 0 a b c e 1

1 e c b a 0

Then A is an MV -algebra and there is an isomorphism between A and L2×L3.

Define the function d on A by:

d(1) = d(a) = d(c) = a, d(0) = d(b) = d(e) = 0.

Then d is a (�,⊕)-derivation and also d is isotone.

In the following theorem we obtain some equivalent conditions such that a

(�,⊕)-derivation is isotone.

Proposition 3.17. Let d be a (�,⊕)-derivation on an MV -algebra A. Then

The following are equivalent:

(0) d is isotone,

(1) d(x) ≤ d(1),

(2) d(x) = d(1) � x,

(3) d(x ∧ y) = d(x) ∧ d(y),

(4) d(x ∨ y) = d(x) ∨ d(y),

(5) d(x⊕ y) = d(x) ⊕ d(y),

(6) d(x� y) = d(x) � d(y),

for all x, y ∈ A.

Proof. (0) ⇒ (1) It is clear.

(1) ⇒ (2) Since d(x) ≤ x, then d(1)�d(x) ≤ x�d(1). Also d(x) ≤ d(1) and

d(1) ∈ B(A) imply that d(x) � d(1) = d(x) ∧ d(1) = d(x). Thus

x� d(1) ≤ d(x) ⊕ (x � d(1)) = d(x) ≤ x� d(1),

and so d(x) = x� d(1), for all x ∈ A.

(2) ⇒ (0) Let x ≤ y. Then x� d(1) ≤ y � d(1), and so d(x) ≤ d(y).

(2) ⇒ (3) By d(1) ∈ B(A), we have

d(x ∧ y) = d(1) � (x ∧ y)

= d(1) ∧ (x ∧ y)

= (d(1) ∧ x) ∧ (d(1) ∧ y) = d(x) ∧ d(y).

(3) ⇒ (0) Let x ≤ y. Then x ∧ y = x, hence

d(x) = d(x ∧ y) = d(x) ∧ d(y),

it follows that d(x) ≤ d(y).
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(2) ⇒ (4) Since L(A) is a distributive lattice and d(1) ∈ B(A), then

d(x ∨ y) = d(1) � (x ∨ y)

= d(1) ∧ (x ∨ y)

= (d(1) ∧ x) ∨ (d(1) ∧ y) = d(x) ∨ d(y).

(4) ⇒ (0) The proof is similar to the proof of (3) ⇒ (0).

(2) ⇒ (5) By (c10), we have d(x⊕y) = d(1)�(x⊕y) = (d(1)�x)⊕(d(1)�y) =

d(x) ⊕ d(y).

(5) ⇒ (1) We have d(1) = d(x ⊕ 1) = d(x) ⊕ d(1). So d(x) ≤ d(1), for all

x ∈ A.

(2) ⇒ (6)

d(x � y) = d(1) � (x� y)

= d(1) � d(1) � x� y

= d(1) � x� d(1) � y = d(x) � d(y).

(6) ⇒ (1) d(x) = d(x � 1) = d(x) � d(1) ≤ d(1), for all x ∈ A. �

Theorem 3.18. Let d : A → A be a function on an MV -algebra A. Then d

is an isotone (�,⊕)-derivation if and only if d is an isotone (∧,∨)-derivation

and d(A) ⊆ B(A).

Proof. It follows from Proposition 3.14, 3.17 and Theorem 3.18 in [16]. �

Remark 3.19. By the above theorem, we conclude that if d is an isotone

(�,⊕)-derivation, then d is a lattice derivation i.e.

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)),

but the converse is not true, even if d is an isotone. Consider L4 and define

d(x) = x ∧ 2/3, for all x ∈ L4. Then d is an isotone lattice derivation, while it

is not a (�,⊕)-derivation, since d(1) = 2/3 �∈ B(A).

By proposition 3.17 and Corollary 3.5 we have the following:

Corollary 3.20. The only isotone (�,⊕)-derivation on Ln and [0, 1] is zero

(�,⊕)-derivation.

Corollary 3.21. Let d be a (�,⊕)-derivation on an MV -algebra A. If d is

isotone, then d(d(x)) = d(x), for all x ∈ A. Moreover d(A) ⊆ B(A).

The following example shows that the converse of the above corollary is not

true in general.
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Example 3.22. (1) Consider derivation d in Example 3.6. We can see that

d(d(2/3)) = d(1/3) = 0 �= 1/3 = d(2/3).

Hence d(d(2/3)) �= d(2/3).

(2) Consider derivation d in Example 3.2 part (2). We get that d(d(x)) =

d(x), for all x ∈ A, but d is not isotone.

Let A be an MV -algebra and d : A → A be a function. Define

Fixd(A) = {x ∈ A : d(x) = x}.
If d is an isotone (�,⊕)-derivation on an MV -algebra A, then d(A) ⊆ Fixd(A).

Proposition 3.23. Let d be a (�,⊕)-derivation on an MV -algebra A. Then

we have

(1) d(1) ∈ Fixd(A),

(2) if x ≤ y and y ∈ Fixd(A), then x ∈ Fixd(A),

(3) if d is isotone, then Fixd(A) is an ideal of A.

Proof. (1) This part is clear by Proposition 3.9 part (3).

(2) Let x ≤ y and d(y) = y. Then

d(x) = d(x ∧ y) = d((x ⊕ y∗) � y)

= (d(x ⊕ y∗) � y) ⊕ ((x ⊕ y∗) � d(y))

= (d(x ⊕ y∗) � y) ⊕ ((x ⊕ y∗) � y)

= (d(x ⊕ y∗) � y) ⊕ (x ∧ y)

= (d(x ⊕ y∗) � y) ⊕ x.

Hence x ≤ d(x) ≤ x, and so d(x) = x.

(3) Let x, y ∈ Fixd(A). By Proposition 3.17 part (2), x = d(x) = d(1) � x

and y = d(y) = d(1) � y. Thus by Proposition 3.17 part (5), we get that

x⊕ y ∈ Fixd(A). Therefore by part (2), Fixd(A) is an ideal of A. �

Theorem 3.24. Let d1 and d2 be two isotone (�,⊕)-derivations on an MV -

algebra A. Then d1 = d2 if and only if Fixd1(A) = Fixd2(A).

Proof. Let Fixd1(A) = Fixd2(A) and x ∈ A. By Corollary 3.21, d1(d1(x)) =

d1(x) and d2(d2(x)) = d2(x). Then d1(x) ∈ Fixd1(A) and d2(x) ∈ Fixd2(A).

So d2(d1(x)) = d1(x) and d1(d2(x)) = d2(x). By d1(x) ≤ x and d2 is isotone,

we get that d1(x) = d2(d1(x)) ≤ d2(x). Similarly, d2(x) ≤ d1(x). Therefore,

d1(x) = d2(x), for all x ∈ A. The proof of the converse is trivial. �
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4. (�,�)-derivations

Definition 4.1. Let A be an MV -algebra. A (�,�)-derivation on A is a

function d : A → A such that

d(x � y) = (d(x) � y) � (x� d(y)),

for all x, y ∈ A.

Example 4.2. (i) Let A be an arbitrary MV -algebra. Define a function d :

A → A by d(x) = 0, for all x ∈ A. Then d is a (�,�)-derivation on A, which

is called the zero (�,�)-derivation.

(ii) Let A be MV -algebra Ln, for n ≥ 2, in Example 2.2. Define function d on

A by d(1) = 1/(n − 1) and d(x) = 0, for all x ∈ Ln − {1}. Then we can see

that d is a (�,�)-derivation on A.

(iii) Consider MV -algebra A in Example 3.16. Define function d : A → A by

d(0) = d(b) = 0, d(a) = d(c) = a, d(e) = b, d(1) = c.

Then d is a (�,�)-derivations on MV -algebra A.

Proposition 4.3. Let d be a (�,�)-derivation on an MV -algebra A. Then

the following hold:

(1) d(0) = 0,

(2) d(x) = d(x) � x,

(3) d(x) ≤ x,

(4) d(x∗) ≤ (d(x))∗,
(5) x ≤ y implies d(x) ≤ d(y),

(6) d(x) ≤ d(1),

(7) d(x) = d(1) � x� (d(x∗))∗,
(8) ifd(x∗) = 0, then d(x) = d(1) � x,

for all x, y ∈ A.

Proof. (1) d(0) = d(0 � 0) = (d(0) � 0) � (0 � d(0)) = 0.

(2) Let x ∈ A. By Definition 4.1 and part (1), we have

d(x) = d(x� 0) = (d(x) � 0) � (x� d(0)) = d(x) � x.

(3) It follows from part (2).

(4) Let x ∈ A. By Definition 4.1, we get that

d(x∗) = d(1 � x) = (d(1) � x) � (1 � d(x)) ≤ (d(x))∗.
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(5) If x ≤ y, then x = x ∧ y = y � (y � x). So

d(x) = d(y � (y � x))

= (d(y) � (y � x)) � (y � d(y � x))

≤ d(y) � (y � x) ≤ d(y).

(6) It follows from part (5).

(7) We have d(x) = d(1�x∗) = (d(1)�x∗)� (1� d(x∗)) = d(1)�x� (d(x∗))∗.
(8) follows from (7). �

Proposition 4.4. Let d be a (�,�)-derivation on an MV -algebra A. Then

(1)Fixd(A) ⊆ B(A),

(2) if x ∈ B(A), then d(x) = d(1) � x,

for all x, y ∈ A.

Proof. (1) Let x ∈ Fixd(A). Since d(x) = d(x) � x, by part (2) of Proposition

4.3 and d(x) = x, we have x� x = x. Hence we get that x ∈ B(A).

(2) By part (3) of Proposition 4.3, we have x ≤ (d(x∗))∗. So

d(x) = d(1) � x� (d(x∗))∗ = d(1) � x ∧ (d(x∗))∗ = d(1) � x.

�

Remark 4.5. The converse of parts (1) and (2) of the above proposition is

not true in general. Consider Example 4.2 part (iii), we have e ∈ B(A), while

d(e) �= e. Also d(b) = d(1) � b, but b �∈ B(A).

By the above proposition we can conclude that if d is a (�,�)-derivation on

A such that d(1) ∈ B(A), then d is a (�,�)-derivation on the boolean center

of A.

Corollary 4.6. Identity function I on an MV -algebra A is a (�,�)-derivation

if and only if A = B(A).

Corollary 4.7. Let d be a (�,�)-derivation on an MV -algebra A and x ∈
B(A). Then

(1) x ≤ d(1) if and only if d(x) = x,

(2) d(1) ≤ x if and only if d(x) = d(1).

Corollary 4.8. Let d be a (�,�)-derivation on an MV -algebra A. Then

d(B(A)) is a sublattice of (A,∧,∨, 0).

By Proposition 4.3 parts (2), (3) and (7) and Proposition 4.4 part (1), we

can see that the only (�,�)-derivations on Ln are zero (�,�)-derivation and

(�,�)-derivation on Example 4.2 (ii). Also the only (�,�)-derivation on [0, 1]

is zero (�,�)-derivation.
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Proposition 4.9. Let d be a map on an MV -algebra A such that d(x) = a�x,

for all x ∈ A and a ∈ A. If d(A) ⊆ B(A), then d is a (�,�)-derivation.

Proof. Let x, y ∈ A be arbitrary. By Theorem 2.5 parts (vii) and (v) and

Proposition 4.3 part (2),

(d(x) � y) � (x � d(y)) = (d(x) � x) � (y∗ � d(y)∗)

= (d(x) ∧ x) � (y ∨ d(y))∗

= d(x) � y∗

= a� x� y∗

= a� (x � y) = d(x � y).

Hence d is a (�,�)-derivation. �

Theorem 4.10. Let d be a (�,�)-derivation on an MV -algebra A. Then

Fixd(A) is an ideal of A.

Proof. First, we will show that if x ≤ y, x ∈ A and y ∈ Fixd(A), then x ∈
Fixd(A). Since d(y) = y, then y = d(1)�y, by Proposition 4.4. By Proposition

4.3 parts (2) and (7) we have

x� d(1) � (d(x∗))∗ = d(x) = x� d(x) (4.1)

So

x� d(1) � (d(x∗))∗ = x� x� d(1) � (d(x∗))∗

⇒ x� y � d(1) � (d(x∗))∗ = x� x� y � d(1) � (d(x∗))∗

⇒ x� y � (d(x∗))∗ = x� x� y � (d(x∗))∗, by y = d(1) � y,

⇒ x� (d(x∗))∗ = x� x� (d(x∗))∗, by x ≤ y, y ∈ B(A)

Thus x � (d(x∗))∗ ≤ x � x. Also, since x ≤ (d(x∗))∗, then we can get that

x� x ≤ x� (d(x∗))∗. Hence x � (d(x∗))∗ = x � x. By hypothesis and (1), we

have

x�(d(x∗))∗ = x�y�(d(x∗))∗ = x�d(1)�y�((d(x∗))∗ = x�y�d(x) = x�d(x).

Hence

x� x = x� d(x). (4.2)

By Proposition 4.3 part (2) and (7) we have x∗ � d(1) � (d(x))∗ = d(x∗) =

x∗�d(x∗). Then similar to above we have x∗�x∗�y�(d(x))∗ = x∗�y�(d(x))∗

and so

(x⊕ x⊕ d(x))∗ � y = (x⊕ d(x))∗ � y. (4.3)

Since x ≤ y and y ∈ B(A), then x⊕d(x) ≤ x⊕x⊕d(x) ≤ y, so (x⊕x⊕d(x))∗⊕
y = (x⊕ d(x))∗ ⊕ y. Thus by (3) and (c9), we get that x⊕ x⊕ d(x) = x⊕ d(x)
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, similar to the above argument we can obtain that

x⊕ x = x⊕ d(x). (4.4)

Therefore by (2), (4) and (c9) we get that d(x) = x and then x ∈ Fixd(A).

Now let x, y ∈ Fixd(A). Then by Proposition 4.4, x = d(1)�x and y = d(1)�y.

Since x, y ∈ B(A), we get that

d(x ∨ y) = (x ∨ y) � d(1) = (x� d(1)) ∨ (y � d(1)) = x ∨ y.

Therefore x⊕ y = x ∨ y ∈ Fixd(A). �

Proposition 4.11. Let d be a (�,�)-derivation on an MV -algebra A. If d is

one to one or onto, then d is identity and A is a boolean algebra.

Proof. Suppose that d is one to one. Since d is a (�,�)-derivation, we have

d(d(1)∗) = d(1 � d(1)) = (d(1) � d(1)) � (1 � d(d(1))) = 0 = d(0),

that is d(1) = 1.

Now, suppose that d is onto. Then there exists x ∈ A such that d(x) = 1.

Since 1 = d(x) ≤ x, then x = 1. Hence d(1) = 1. Therefore by Theorem 4.10

and Proposition 4.4, we get that A = Fixd(A) = B(A). �

Corollary 4.12. Let d be a (�,�)-derivation on an MV -algebra A and d(1) ∈
B(A). Then we have

(1) d(1) ∈ Fixd(A),

(2) d(A) = Fixd(A).

Proof. (1) follows from Corollary 4.7 part (1).

(2) It is clear that Fixd(A) ⊆ d(A). Let x ∈ d(A). Then there is y ∈ A such

that x = d(y). Since x = d(y) ≤ d(1) and d(1) ∈ Fixd(A), then x ∈ Fixd(A),

by Theorem 4.10. Therefore d(A) ⊆ Fixd(A). �

Theorem 4.13. Let I be a finite ideal of an MV -algebra A such that I ⊆ B(A).

Then there exists a (�,�)-derivation d such that Fixd(A) = I.

Proof. Since I is a finite ideal of A, then b =
∨

a∈I a ∈ I. Consider the map

d defined on A, by d(x) = x � b, for all x ∈ A. Since b ∈ I and d(x) ≤ b,

for all x ∈ A, we get that d(A) ⊆ I ⊆ B(A). Thus by Proposition 4.9, d is

(�,�)-derivation on A. Now we show that Fixd(A) = I. Let x ∈ I. Then

d(x) = x ∧ b = x, and so x ∈ Fixd(A). Since d(1) ∈ B(A), then by Corollary

4.12 part (2), Fixd(A) = d(A). Thus by hypothesis we get that Fixd(A) ⊆ I.

Therefore Fixd(A) = I. �

In the following proposition, we determine the relationship between (�,�)-

derivations and (�,⊕)-derivations on MV -algebras.
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Proposition 4.14. (i) If d is an isotone (�,⊕)-derivation on MV -algebra A,

then d is a (�,�)-derivation,

(ii) If d is a (�,�)-derivation on boolean algebra A, then d is a (�,⊕)-

derivation.

Proof. (i) The proof follows from Propositions 3.17, 3.14 and 4.9.

(ii) It is clear by Proposition 4.4 and Corollary 3.15. �

5. Conclusion and Future Research

In this paper, we applied the notion of derivation in rings to MV -algebras

and we have introduced the notions of (�,⊕)- derivations and (�,�)- deriva-

tions. We have also presented many important properties of these deriva-

tions on MV -algebras. Furthermore, we discussed the relations among (�,�)-

derivations and (�,⊕)-derivations. We proved that if d is an isotone (�,⊕)-

derivation then d is a (�,�)-derivation and d(A) ⊆ B(A). Conversely, if d is a

(�,�)-derivation on a boolean algebra A, then d is an isotone (�,⊕)-derivation.

In [11], B. Gerla introduced a pair of semirings A∨ = (A,∨,�, 0, 1) and A∧ =

(A,∧,⊕, 0, 1) on MV -algebra (A,⊕,∗ , 0) such that ∗ is semirings isomorphism

between A∨ and A∧. Hence in future , we will use the other operations to define

different derivations on an MV-algebra and we will obtain their properties.

Also, we will study the relationship between them. We hope that the above

work would serve as a foundation for further on study the structure of various

derivations.

Since MV -algebras and BL-algebras are closely related, we will use the re-

sults of this paper to study derivations on BL-algebras and related algebraic

systems. Some important issues for future work are: (i) developing the prop-

erties of a derivation, (ii) defining new derivations which are related to given

derivations on MV -algebras, (iii) finding useful results on the other algebraic

structures.
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