The method used in this research consists of a hybrid of the Block-Pulse functions and third-kind Chebyshev polynomials for solving systems of Fredholm integral differential equations. Through the use of an operational matrix representing the derivation, the problem is represented by a system of algebraic equations. Some examples are provided to illustrate the simplicity and effectiveness of the utilized method. In addition, results of the presented method have been compared with those obtained from the Tau method and variational iteration method that reveal the proposed scheme to be more applicable.

Type of Study: Research paper |
Subject:
General

1. J. Biazar, H. Ebrahimi, A Strong Method for Solving System of Integral Differential Equations, Applied Mathematics, 2(9), (2011), 1105-1113. [DOI:10.4236/am.2011.29152]

2. A. Hosry, R. Nakad, S. Bhalekar, A Hybrid Function Approach to Solving a Class of Fredholm and Volterra Integro-Differential Equations, Math. Comput. Appl., 25(2), (2020), 30. [DOI:10.3390/mca25020030]

3. C. Hsiao, Hybrid Function Method for Solving Fredholm and Volterra Integral Equations of the Second Kind, Journal of Computational and Applied Mathematics, 230(1), (2009), 59-68. [DOI:10.1016/j.cam.2008.10.060]

4. R. Jafari, R. Ezzati, K. Maleknejad, Numerical Solution of Fredholm Integro-Differential Equations By Using Hybrid Function Operational Matrix of Differentiation, Int. J. Industrial Mathematics, 9(4), (2017), 349-358.

5. Z. H. Jiang, W. Schaufelberger, Block-Pulse Functions and Their Applications in Control Systems, Springer-Verlag, Berlin, Heidelberg, 1992. [DOI:10.1007/BFb0009162]

6. K. Maleknejad, Y. Mahmoudi, Numerical Solution of Linear Fredholm Integral Equation by Using Hybrid Taylor and Block-Pulse Functions, Appl. Math. Comput., 149, (2004), 799-806. [DOI:10.1016/S0096-3003(03)00180-2]

7. K. Maleknejad, M. Tavassoli Kajani, A Hybrid Collocation Method Based on Combining the Third Kind Chebyshev Polynomials and Block-Pulse Functions for Solving HigerOrder Initial Value Problems, Kuwait journal of Science, 43(4), (2016), 1-10.

8. J. Pour-Mahmoud, M. Y. Rahimi-Ardabili, S. Shahmorad, Numerical Solution of the System of Fredholm Integro-Differential Equations by the Tau Method, Applied Mathematics and Computation, 168(1), (2005), 465-478. [DOI:10.1016/j.amc.2004.09.026]

9. G. P. Rao, L. Sivakumar, Analysis Analysis and Synthesis of Dynamic Systems Containing Time-Delays Via Block-Pulse Functions, Proc. IEE, 125, (1978), 1064-1068. [DOI:10.1049/piee.1978.0243]

10. M. Razzaghi, Fourier Series Approach for the Solution of Linear Two-Point Boundary Value Problems with Time-Varying Coefficients, Int. J. Syst. Sci., 21(9), (1990), 1783-1794. [DOI:10.1080/00207729008910498]

11. P. Sannuti, Analysis and Synthesis of Dynamic Systems Via Block-Pulse Functions, Proc. Inst. Elect. Eng., 124(6), (1977), 569-571. [DOI:10.1049/piee.1977.0119]

12. M. Tavassoli Kajani, A. Hadi Vencheh, Solving Second Kind Integral Equations with Hybrid Chebyshev and Block-Pulse Functions, Appl. Math. Comput., 163(1), (2005), 71-77. [DOI:10.1016/j.amc.2003.11.044]

13. X. T. Wang, Y. M. Li, Numerical Solutions of Integro-Differential Systems by Hybrid of General Block-Pulse Functions and the Second Chebyshev Polynomials, Appl. Math. Comput., 209(2), (2009), 266-272. [DOI:10.1016/j.amc.2008.12.044]

14. X. T. Wang, Numerical Solutions of Optimal Control for Time Delay Systems by Hybrid of Block-Pulse Functions and Legendre Polynomials, Appl. Math. Comput., 184(2), (2007), 849-856. [DOI:10.1016/j.amc.2006.06.075]

15. X. T. Wang, Numerical Solution of Time-Varying Systems with a Stretch by General Legendre Wavelets, Appl. Math.comput., 198(2), (2008), 613-620. [DOI:10.1016/j.amc.2007.08.058]

16. A. Wazwaz, Linear and Nonlinear Integral Equations, Methods And Applications, Springer Berlin, Heidelberg, 2011. [DOI:10.1007/978-3-642-21449-3]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |